Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On weak${}^*$ convergence in $H^1$


Authors: Joseph A. Cima and Alec Matheson
Journal: Proc. Amer. Math. Soc. 124 (1996), 161-163
MSC (1991): Primary 42B30; Secondary 30D55
DOI: https://doi.org/10.1090/S0002-9939-96-02995-4
MathSciNet review: 1285983
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A bounded sequence of functions in $H^1$ which converges in measure on a set of positive measure of the unit circle converges weak${}^*$. An example is given to show that weak${}^*$ convergence cannot be replaced by weak convergence.


References [Enhancements On Off] (What's this?)

  • 1 K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, NJ, 1962 MR 24:A2844.
  • 2 P. W. Jones and J.-L. Journé, On weak${}^*$ convergence in $H^1(\mbox{\rm R}^d)$, Proc. Amer. Math. Soc. 120 (1994), 137--138 MR 94b:42011.
  • 3 J. Khintchin, Sur les suites de fonctions analytiques bornées sur leur ensemble, Fund. Math. 4 (1923), 72--75.
  • 4 A. Ostrowski, Über die Bedeutung der Jensenschen Formel für einige Fragen der Komplexen Funktionentheorie, Acta Sci. Math. (Szeged) 1 (1922--1923), 80--87.
  • 5 I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, Gosudarstvennoe izdatel$'$stvo tekhniko-teoreticheskoi literatury, Moskva, 1950 MR 13:926h.
  • 6 H. P. Rosenthal, The Banach spaces $C(K)$ and $L^p(\mu )$, Bull. Amer. Math. Soc. 81 (1975), 763--781 MR 52:1281.
  • 7 A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1968 MR 38:4882.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42B30, 30D55

Retrieve articles in all journals with MSC (1991): 42B30, 30D55


Additional Information

Joseph A. Cima
Email: cima@math.unc.edu

Alec Matheson
Email: matheson@math.lamar.edu

DOI: https://doi.org/10.1090/S0002-9939-96-02995-4
Keywords: $H^1$, weak${}^*$ convergence, weak convergence
Communicated by: \commby Dale Alspach
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society