Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Symplectic leaves and deformation quantization


Author: Albert J. L. Sheu
Journal: Proc. Amer. Math. Soc. 124 (1996), 95-100
MSC (1991): Primary 46L87, 81R50
DOI: https://doi.org/10.1090/S0002-9939-96-03016-X
MathSciNet review: 1286007
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that for any classical simple compact Poisson Lie group $K$, there is no quantization of $K$ using the quantum group $K_q$, which is both group-preserving and symplectic leaf-preserving.


References [Enhancements On Off] (What's this?)

  • [B-D] A. Belavin and V. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Functional Anal. Appl. 16 (1982).MR 84e:81034
  • [C] A. Connes, A survey of foliation and operator algebras, Proc. Sympos. Pure Math., vol. 38, Part I, Amer. Math. Soc., Providence, RI, 1982, pp. 521--628.MR 84m:58140
  • [D] V. G. Drinfeld, Quantum groups, Proc. I.C.M. Berkeley 1986, vol. 1, Amer. Math. Soc., Providence, RI, 1987, pp. 789--820. MR 89f:17017
  • [J-St] B. Jurco and P. Stovícek, Quantum dressing orbits on compact groups, Comm. Math. Phys. 152 (1993), 97--126.MR 94b:58008
  • [Le-So] S. Levendorskii and Y. Soibelman, Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Comm. Math. Phys. 139 (1991), 141--170.MR 92h:58020
  • [Lu-We] J. H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Differential Geom. 31 (1990), 501--526.MR 91c:22012
  • [Re-T-F] N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193--225.MR 90j:17033
  • [Ri1] M. A. Rieffel, Deformation quantization and operator algebras, Proc. Sympos. Pure Math., vol. 51, Amer. Math. Soc., Providence, RI 1990, pp. 411--423.MR 91h:46120
  • [Ri2] ------, Quantization and C*-algebras, $C^*$-Algebras: 1943-1993, Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 66--97. CMP 94:17
  • [Ri3] ------, Compact quantum groups associated with toral subgroups, Contemp. Mathematics, vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 465--491.MR 94i:22022
  • [Sh1] A. J. L. Sheu, Quantization of the Poisson $SU(2)$ and its Poisson homogeneous space -- the $2$-sphere, Comm. Math. Phys. 135 (1991), 217--232.MR 91m:58011
  • [Sh2] ------, Weyl quantization of Poisson $SU(2) $, Pacific J. Math. (to appear).
  • [Sh3] ------, Leaf-preserving quantizations of Poisson $SU(2)$ are not coalgebra homomorphisms, Comm. Math. Phys. (to appear).
  • [Sh4] ------, Compact quantum groups and groupoid C*-algebras, preprint.
  • [So] Ya. S. Soibelman, Algebra of functions on compact quantum group and its representations, Leningrad Math. J. 2 (1991), 161--178.MR 91i:58053a
  • [So-V] Ya. S. Soibelman and L. L. Vaksman, On some problems in the theory of quantum groups, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 3--54.MR 93h:17043
  • [V-So] L. L. Vaksman and Ya. S. Soibelman, Algebra of functions on the quantum group $SU(2)$, Functional Anal. Appl. 22 (1988), 170--181.MR 90f:17019
  • [We] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523--557.MR 86i:58059
  • [Wo1] S. L. Woronowicz, Twisted $SU(2)$ group: an example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117--181.MR 88h:46130
  • [Wo2] ------, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613--665.MR 88m:46079

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L87, 81R50

Retrieve articles in all journals with MSC (1991): 46L87, 81R50


Additional Information

Albert J. L. Sheu
Email: sheu@kuhub.cc.ukans.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03016-X
Received by editor(s): June 21, 1994
Additional Notes: Partially supported by NSF-Grant DMS-9303231
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society