Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On comb domains


Author: James A. Jenkins
Journal: Proc. Amer. Math. Soc. 124 (1996), 187-191
MSC (1991): Primary 30D40, 31A15
DOI: https://doi.org/10.1090/S0002-9939-96-03034-1
MathSciNet review: 1291774
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A result for comb domains is proved which is stronger than but in particular implies a conjecture of Rodin and Warschawski.


References [Enhancements On Off] (What's this?)

  • 1 K. Burdzy, Brownian excursions and minimal thinness III, Math. Z. 192 (1986), 89--107.MR 89b:60175
  • 2 James A. Jenkins and Kôtaro Oikawa, Conformality and semi-conformality at the boundary , Reine Angew. Math. 291 (1977), 92--117.MR 55:12924
  • 3 B. Rodin and S. Warschawski, Extremal length and the boundary behavior of conformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 2 (1976), 463--500.MR 57:6394
  • 4 ------, Extremal length and univalent functions I. The angular derivative, Math. Z. 153 (1977), 1--17.MR 58:28461
  • 5 ------, Remarks on a paper of K. Burdzy, J. Analyse Math. 46 (1986), 251--260.MR 87j:30079
  • 6 Swati Sastry, Existence of an angular derivative for a class of strip domains Proc. Amer. Math. Soc. 123 (1995), 1075--1082.MR 95e:30011

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30D40, 31A15

Retrieve articles in all journals with MSC (1991): 30D40, 31A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-96-03034-1
Received by editor(s): July 26, 1994
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society