Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A proportional Dvoretzky-Rogers
factorization result


Author: A. A. Giannopoulos
Journal: Proc. Amer. Math. Soc. 124 (1996), 233-241
MSC (1991): Primary 46B07
MathSciNet review: 1301496
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $X$ is an $n$-dimensional normed space and $\varepsilon\in(0,1)$, there exists $m\geq(1-\varepsilon)n$, such that the formal identity $i_{2,\infty}\colon l^m_2\to l^m_\infty$ can be written as $i_{2,\infty}=\alpha\circ\beta,\beta\colon l^m_2\to X,\alpha\colon X\to l^m_\infty$, with $\|\alpha\|\cdot\|\beta\|\leq c/\varepsilon$. This is proved as a consequence of a Sauer-Shelah type theorem for ellipsoids.


References [Enhancements On Off] (What's this?)

  • [B-S] J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), no. 2, 169–180. MR 947820, 10.1007/BF02787120
  • [B-T] J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), no. 2, 137–224. MR 890420, 10.1007/BF02772174
  • [D-R] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 192–197. MR 0033975
  • [G] A. A. Giannopoulos, A note on the Banach-Mazur distance to the cube, GAFA Seminar (to appear).
  • [J] Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204. MR 0030135
  • [L-T] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
  • [M-Sc] Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
  • [Pi] Albrecht Pietsch, Operator ideals, Mathematische Monographien [Mathematical Monographs], vol. 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR 519680
  • [S-T] S. J. Szarek and M. Talagrand, An “isomorphic” version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 105–112. MR 1008718, 10.1007/BFb0090050
  • [Sa] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147. MR 0307902
  • [Sh] Saharon Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247–261. MR 0307903
  • [Sz.1] Stanisław J. Szarek, Spaces with large distance to 𝑙ⁿ_{∞} and random matrices, Amer. J. Math. 112 (1990), no. 6, 899–942. MR 1081810, 10.2307/2374731
  • [Sz.2] S. J. Szarek, On the geometry of the Banach-Mazur compactum, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 48–59. MR 1126736, 10.1007/BFb0090211
  • [T-J] Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B07

Retrieve articles in all journals with MSC (1991): 46B07


Additional Information

A. A. Giannopoulos
Affiliation: Department of Mathematics, Case Western Reserve University, Cleveland, Ohio 44106
Address at time of publication: Department of Mathematics, University of Crete, Iraklion, Crete, Greece
Email: deligia@talos.cc.uch.gr

DOI: https://doi.org/10.1090/S0002-9939-96-03071-7
Received by editor(s): February 21, 1994
Received by editor(s) in revised form: August 15, 1994
Communicated by: Dale Alspach
Article copyright: © Copyright 1996 American Mathematical Society