Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a conjecture by Karlin and Szegö


Authors: Deok H. Kim and Kil H. Kwon
Journal: Proc. Amer. Math. Soc. 124 (1996), 227-231
MSC (1991): Primary 33C45, 42C05
DOI: https://doi.org/10.1090/S0002-9939-96-03144-9
MathSciNet review: 1301033
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1961, Karlin and Szegö conjectured : If $\{P_n(x)\}_{n=0}^\infty $ is an orthogonal polynomial system and $\{P_n'(x)\}_{n=1}^\infty $ is a Sturm sequence, then $\{P_n(x)\}_{n=0}^\infty $ is essentially (that is, after a linear change of variable) a classical orthogonal polynomial system of Jacobi, Laguerre, or Hermite. Here, we prove that for any orthogonal polynomial system $\{P_n(x)\}_{n=0}^\infty $, $\{P_n'(x)\}_{n=1}^\infty $ is always a Sturm sequence. Thus, in particular, the above conjecture by Karlin and Szegö is false.


References [Enhancements On Off] (What's this?)

  • 1 W. A. Al-Salam and T. S. Chihara, Another characterization of the classical orthogonal polynomials, SIAM J. Math. Anal. 3 (1972), 65--70, MR 47:5320.
  • 2 T. S. Chihara, An introduction to orthogonal polynomials, Gordon Breach, New York, 1977, MR 58:1979.
  • 3 W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935), 634--638.
  • 4 ------, Über höhere Ableitungen von Orthogonalpolynomen, Math. Z. 43 (1937), 101.
  • 5 S. Karlin and G. Szegö, On certain determinants whose elements are orthogonal polynomials, J. Analyse Math. 8 (1961), 1--157, MR 26:539.
  • 6 H. L. Krall, On derivatives of orthogonal polynomials, Bull. Amer. Math. Soc 42 (1936), 423--428.
  • 7 ------, On higher derivatives of orthogonal polynomials, Bull. Amer. Math. Soc 42 (1936), 867--870.
  • 8 K. H. Kwon, J. K. Lee, and B. H. Yoo, Characterizations of classical orthogonal polynomials, Results in Math. 24 (1993), 119--128, MR 94i:33011.
  • 9 N. J. Sonine, Recherches sur les fonctions cylindrigues et le développment des fonctions continues en series, Math. Ann 16 (1880), 1--80.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 33C45, 42C05

Retrieve articles in all journals with MSC (1991): 33C45, 42C05


Additional Information

Kil H. Kwon
Email: khkwon@jacobi.kaist.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-96-03144-9
Received by editor(s): August 12, 1994
Communicated by: Hal L. Smith
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society