Harmonic maps with finite total energy

Authors:
Shiu-Yuen Cheng, Luen-Fai Tam and Tom Y.-H. Wan

Journal:
Proc. Amer. Math. Soc. **124** (1996), 275-284

MSC (1991):
Primary 53C99; Secondary 31C05, 58E20

MathSciNet review:
1307503

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We will give a criteria for a nonnegative subharmonic function with finite energy on a complete manifold to be bounded. Using this we will prove that if on a complete noncompact Riemannian manifold , every harmonic function with finite energy is bounded, then every harmonic map with finite total energy from into a Cartan-Hadamard manifold must also have bounded image. No assumption on the curvature of is required. As a consequence, we will generalize some of the uniqueness results on homotopic harmonic maps by Schoen and Yau.

**Cg**Shiu Yuen Cheng,*Liouville theorem for harmonic maps*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 147–151. MR**573431****Ci**Hyeong In Choi,*On the Liouville theorem for harmonic maps*, Proc. Amer. Math. Soc.**85**(1982), no. 1, 91–94. MR**647905**, 10.1090/S0002-9939-1982-0647905-3**Gr**A. A. Grigor′yan,*The heat equation on noncompact Riemannian manifolds*, Mat. Sb.**182**(1991), no. 1, 55–87 (Russian); English transl., Math. USSR-Sb.**72**(1992), no. 1, 47–77. MR**1098839****K**Atsushi Kasue,*A compactification of a manifold with asymptotically nonnegative curvature*, Ann. Sci. École Norm. Sup. (4)**21**(1988), no. 4, 593–622. MR**982335****Ke**Wilfrid S. Kendall,*Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence*, Proc. London Math. Soc. (3)**61**(1990), no. 2, 371–406. MR**1063050**, 10.1112/plms/s3-61.2.371**L-T 1**Peter Li and Luen-Fai Tam,*Symmetric Green’s functions on complete manifolds*, Amer. J. Math.**109**(1987), no. 6, 1129–1154. MR**919006**, 10.2307/2374588**L-T 2**Peter Li and Luen-Fai Tam,*The heat equation and harmonic maps of complete manifolds*, Invent. Math.**105**(1991), no. 1, 1–46. MR**1109619**, 10.1007/BF01232256**L-T 3**------,*Green's functions, harmonic functions and volume comparison*, J. Differential Geom.**41**(1995), 277--318.**Ly**T. J. Lyons, private communication.**SC**Laurent Saloff-Coste,*Uniformly elliptic operators on Riemannian manifolds*, J. Differential Geom.**36**(1992), no. 2, 417–450. MR**1180389****S-S-G**Leo Sario, Menahem Schiffer, and Moses Glasner,*The span and principal functions in Riemannian spaces*, J. Analyse Math.**15**(1965), 115–134. MR**0184182****S-Y 1**Richard Schoen and Shing Tung Yau,*Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature*, Comment. Math. Helv.**51**(1976), no. 3, 333–341. MR**0438388****S-Y 2**Richard Schoen and Shing Tung Yau,*Compact group actions and the topology of manifolds with nonpositive curvature*, Topology**18**(1979), no. 4, 361–380. MR**551017**, 10.1016/0040-9383(79)90026-0**S-T-W**J.-T. Sung, L.-F. Tam, and J.-P. Wang,*Bounded harmonic maps on a class of manifolds*, Proc. Amer. Math. Soc. (to appear).**V**N. T. Varopoulos,*Potential theory and diffusion on Riemannian manifolds*, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 821–837. MR**730112****W**J.-P. Wang, private communication.**Y**Shing Tung Yau,*Harmonic functions on complete Riemannian manifolds*, Comm. Pure Appl. Math.**28**(1975), 201–228. MR**0431040**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
53C99,
31C05,
58E20

Retrieve articles in all journals with MSC (1991): 53C99, 31C05, 58E20

Additional Information

**Luen-Fai Tam**

Email:
ltam@math.uci.edu

**Tom Y.-H. Wan**

Email:
tomwan@cuhk.hk

DOI:
https://doi.org/10.1090/S0002-9939-96-03170-X

Received by editor(s):
July 28, 1994

Additional Notes:
The first and the third authors are partially supported by Earmarked Grant, Hong Kong, and the second author is partially supported by NSF grant #DMS9300422.

Communicated by:
Peter Li

Article copyright:
© Copyright 1996
American Mathematical Society