Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A Farey tree organization of locking regions
for simple circle maps


Authors: K. M. Brucks and C. Tresser
Journal: Proc. Amer. Math. Soc. 124 (1996), 637-647
MSC (1991): Primary 58F03
DOI: https://doi.org/10.1090/S0002-9939-96-03025-0
MathSciNet review: 1291764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $f$ be a $C^3$ circle endomorphism of degree one with exactly two critical points and negative Schwarzian derivative. Assume that there is no real number $a$ such that $f + a$ has a unique rotation number equal to $\frac{p}{q}$. Then the same holds true for any $\frac{p'}{q'}$ such that $\frac{p}{q}$ stands above $\frac{p'}{q'}$ in the Farey tree and can be related to it by a path on the tree.


References [Enhancements On Off] (What's this?)

  • 1 L. Alsedá, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, World Scientific, River Edge, NJ, 1993, CMP 94:06.
  • 2 P. M. Blecher and M. V. Jakobson, Absolutely continuous invariant measures for some maps of the circle, Statistical Physics and Dynamical Systems, Progr. Phys., vol. 10, Birkhäuser, Boston, Basel, and Stuttgart, 1985, pp. (303--315), MR 87f:58081.
  • 3 P. L. Boyland, Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals, Comm. Math. Phys. 106 (1986), 353--381, MR 88c:58045.
  • 4 A. Chenciner, J. M. Gambaudo, and C. Tresser, Une remarque sur la structure des endomorphismes de degré un du cercle, C. R. Acad. Sci. Paris Sér. I Math 299 (1984), 771--773, MR 86g:58081.
  • 5 A. Epstein, L. Keen, and C. Tresser, The set of maps $f_{a,b} : \theta \mapsto \theta + a + \frac{b}{2 \pi } \cdot \sin (2 \pi \theta ) $ with any given rotation numbers is contractible, Comm. Math. Phys. (to appear).
  • 6 B. Friedman and C. Tresser, Comb structure in hairy boundaries: some transition problems for circle maps, Phys. Lett. A 117 (1986), 15--22, MR 87j:58061.
  • 7 J. M. Gambaudo and C. Tresser, On the dynamics of quasi-contractions, Bol. Soc. Brasil. Mat. (N.S.) 19 (1986), 61--114, MR 91d:54033.
  • 8 L. Goldberg and C. Tresser, Rotation orbits and the farey tree, Ergodic Theory Dynamical Systems (to appear).
  • 9 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 1979, MR 81i:10002.
  • 10 K. M. Khanin, Universal estimates for critical circle mappings, Chaos 1 (1991), 181--186, MR 93a:58106.
  • 11 R. S. Mackay and C. Tresser, Transition to topological chaos for circle maps, Phys. D 19 (1986), 206--237, MR 87k:58182.
  • 12 H. Poincaré, Sur les courbes définies par des équations différentielles, J. Math. Pures Appl. (4) 1 (1885), 167--244, Euvres Complètes.
  • 13 R. M. Siegel, C. Tresser, and G. Zettler, A decoding problem in dynamics and in number theory, Chaos 2 (1982), 473--494.
  • 14 D. J. Uherka, C. Tresser, R. Galeeva, and D. K. Campbell, Solvable models for the quasi-periodic transition to chaos, Phys. Lett. A. 170 (1992), 189--194, Chaos (to appear), MR 94e:58092.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 58F03

Retrieve articles in all journals with MSC (1991): 58F03


Additional Information

K. M. Brucks
Affiliation: Department of Mathematical Sciences, University of Wisconsin, Milwaukee, Wisconsin 53211
Email: kmbrucks@csd.uwm.edu

C. Tresser
Affiliation: Thomas J. Watson Research Center, I.B.M., P.O. Box 218, Yorktown Heights, New York 10598
Email: tresser@watson.ibm.com

DOI: https://doi.org/10.1090/S0002-9939-96-03025-0
Received by editor(s): July 20, 1994
Communicated by: Linda Keen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society