POLYNOMIAL RINGS
OVER GOLDIE-KERR COMMUTATIVE RINGS II

CARL FAITH
(Communicated by Wolmer V. Vasconcelos)

In memory of Pere Menal

Abstract. An overlooked corollary to the main result of the stated paper (Proc. Amer. Math. Soc. 120 (1994), 989–993) is that any Goldie ring R of Goldie dimension 1 has Artinian classical quotient ring Q, hence is a Kerr ring in the sense that the polynomial ring $R[X]$ satisfies the acc on annihilators (= acc⊥).

More generally, we show that a Goldie ring R has Artinian Q when every zero divisor of R has essential annihilator (in this case Q is a local ring; see Theorem 1').

A corollary to the proof is Theorem 2: A commutative ring R has Artinian Q iff R is a Goldie ring in which each element of the Jacobson radical of Q has essential annihilator.

Applying a theorem of Beck we show that any acc⊥ ring R that has Noetherian local ring R_p for each associated prime P is a Kerr ring and has Kerr polynomial ring $R[X]$ (Theorem 5).

Introduction

Throughout, R denotes a commutative ring.

It is convenient to state the corollary in generalized form as follows:

1. Theorem. If R is a Goldie ring in which each zero divisor x has essential annihilator x^\perp, then R has Artinian quotient ring Q.

In this case, it follows from Small’s theorem [S] that $R[X]$ has Artinian quotient ring.

A ring R has finite Goldie (or uniform) dimension n if n is the maximal number of nonzero ideals in a direct sum contained in R. Furthermore, R is Goldie if R has acc⊥ and finite Goldie dimension. Uniform ring is another term for a ring with Goldie dimension 1, equivalently, 0 is an irreducible ideal. The singular ideal of R is the set

$$Z(R) = \{ x \in R \mid x^\perp \text{ is essential} \}.$$

Then $Z(R)$ is contained in the set $z(R)$ of zero divisors. Obviously, when R is uniform, we have that $z(R) = Z(R)$, and then $Z(Q)$ is the set of non-units of Q.

We can sharpen Theorem 1 in this terminology:

Received by the editors April 25, 1994 and, in revised form, August 5, 1994.
1991 Mathematics Subject Classification. Primary 13B25, 13C05, 13E05, 13H99, 13J10; Secondary 16D90, 16P60, 16S50.
1'. Theorem. If R is a Goldie ring, and if $z(R) \subseteq Z(R)$, then Q is an Artinian local ring (hence R is Kerr). Conversely.1

Proof. Q also is a Goldie ring (see [F3]), and $Z(Q)$ is a nil ideal in any acc⊥ ring (see, e.g., [F1]). Moreover, every element x in the Jacobson radical $J(Q)$ is a nonunit; hence $x = rs^{-1}$, where $r \in z(R) \subseteq Z(R)$ and $s \in R^*$. Then, x has essential right annihilator x^+ in Q, since $r^+ \cap Q$ is essential in R, a fact that shows that $J(Q) \subseteq Z(Q)$. Thus, $J(Q)$ is nil, so Q is Artinian by Theorem 1.1 of [F2]. Since $J(Q)$ is the set of non-units of Q, it follows that Q is local.

The converse hinges on the fact that if Q is Artinian, then Q is Noetherian and hence Goldie, so R is Goldie. Furthermore, $J(Q)$ is nilpotent, and every nilpotent element x has essential annihilator. (Let I be any nonzero ideal, and $x^n = 0$ where $x^{n-1} \neq 0$. If $x^+ \cap I = 0$, then $xI \neq 0$. Suppose i is least such that $x^i I \neq 0$. Then $x^+ \cap I \supseteq x^i I \neq 0$, a contradiction which shows that x^+ is an essential ideal.) Since $Z(R)$ is nilpotent in an acc⊥ ring (loc. cit.), then $J(Q) = Z(Q)$. Since Q is local and $J(Q)$ is nilpotent, then every zero divisor x of R lies in $J(Q) \cap R = Z(Q) \cap R = Z(R)$, so $z(R) \subseteq Z(R)$ as needed. □

The proof of Theorem 1' has the corollary.

2. Theorem. A ring R has Artinian Q if R is a Goldie ring and the Jacobson radical of Q coincides with its singular ideal, that is, $J(Q) = Z(Q)$.

Proof. If $J(Q) = Z(Q)$, then R acc⊥ ⇒ $J(Q)$ is nil, so R Goldie ⇒ Q is Artinian by Theorem 1.1 of [F2]. Conversely, Q Artinian ⇒ $J(Q)$ is nil, hence $J(Q) \subseteq Z(Q)$. But $Z(Q)$ is nil in an acc⊥ ring, hence $Z(Q) = J(Q)$. □

In a uniform ring every nonzero ideal is essential, so the theorems each imply that any uniform acc⊥ ring R has Artinian Q, but Q is in fact then quasi-Frobenius since Q has simple socle. With this fact as a motivator, we next derive a more general theorem with the same conclusion (Theorem 2).

A ring R is F-injective (= \aleph_0-injective) if every map $I \to R$ of a finitely generated ideal I is extendable to $R \to R$. (Any FP-injective ring R is F-injective; cf. [F3], p. 189.) Any F-injective ring R coincides with its quotient ring Q. Any valuation ring R has FP-injective Q by a theorem of Facchini ([F-P], p. 96, Corollary 6-10; cf. [F-F]).

3. Theorem. If R is an acc⊥ ring with F-injective (e.g., FP or self-injective) quotient ring Q, then R is Kerr, in fact Q is quasi-Frobenius (= QF).

Proof. Every finitely generated ideal I of an F-injective ring R is an annihilator (see, e.g., [F3], p. 189, Prop. 23.21.2). The acc⊥ in R implies the acc⊥ in Q, and hence Q satisfies the acc on finitely generated ideals, so Q is Noetherian. But a Noetherian F-injective ring is self-injective, hence QF. □

4. Corollary. Any uniform acc⊥ ring R, e.g. any acc⊥ valuation ring, is a Kerr ring. Furthermore Q is Artinian in fact QF.

Proof. Q is Artinian by Theorem 1, and has Goldie dim = 1, hence has simple socle, which by classical ideal theory (cf. Corollary 2 of [F1]) implies that Q is QF. □

1Classically, it is known that a ring R has local Q iff the set $z(R)$ is an ideal P. In this case, P is a prime ideal and $Q = R_P$ is the local ring at P. Any Artinian ring R is a finite product of local Artinian rings. See Theorem 2 in this connection.
When is $R[X]$ Kerr?

We raised the question in [F2]: If R is Kerr, is $R[X]$ Kerr? We cited some obvious examples in [F2], e.g. any subring of a Noetherian ring, and mentioned the Camillo-Guralnick theorem which yields an affirmative answer for an algebra over an uncountable field. We next show that Beck’s theorem [B] yields another affirmative answer.

5. Theorem. If R is an acc ring and if R_p is Noetherian for every associated prime P, then the same is true of $R[X]$. Furthermore, both R and $R[X]$ have (flat) embeddings into Noetherian rings, hence each is a Kerr ring.

Proof. In any acc ring R, the set $\text{Ass}R$ of associated prime ideals is finite (see [F4], Corollary 3.7 and Theorem 3.6), and obviously $\bigcup_{P \in \text{Ass}R} P$ is the set $z(R)$ of zero divisors (i.e., every $x \in z(R)$ is contained in some $P \in \text{Ass}R$). We can now apply Beck’s theorem ([B], Theorem 5.1) to conclude that R has a flat embedding in a Noetherian ring T, and hence both R and $R[X]$ are Kerr, since $R[X]$ is contained in a Noetherian ring $T[X]$.

Next, contraction induces a 1-1 correspondence $\text{Ass}R[X] \rightarrow \text{Ass}R$ under various conditions including acc in R ([F4], Theorem 3.12 B; any acc ring is trivially a zip ring in the terminology employed there).

Thus, if $P \in \text{Ass}R[X]$, then

$$P_0 = P \cap R \in \text{Ass}R$$

and

$$R[X]_P = R_{P_0}[X]_{PR_0[X]} = R_M[X]_{PR_M[X]}$$

which holds for any prime ideal P of $R[X]$, and M any maximal ideal containing $P_0 = P \cap R$. (See, e.g., [H], p.73, Lemma 13.1.)

In particular, this shows that

$$R_{P_0} \text{ Noetherian } \Rightarrow R[X]_P \text{ Noetherian,}$$

so $R[X]$ has the stated property (this also follows from the theorem of Beck since $R[X] \hookrightarrow T[X]$ is a flat embedding in a Noetherian ring). \qed

Since a Kerr ring need not embed in a Noetherian ring, this shows that a Kerr ring R does not in general localize to Noetherian rings at associated primes.

6. Corollary. If R satisfies the hypothesis of Theorem 5, then so does the infinite polynomial ring $S = R[x_1, \ldots, x_n, \ldots]$, that is, S has a flat embedding in a Noetherian ring, hence is Kerr.

Proof. By Theorem 5, R has a flat embedding in a Noetherian ring T, and by a remark of D. D. Anderson (cited in [C], p. 75, Remark 2), $A = T[x_1, \ldots, x_n, \ldots]$ localized at the ideal P consisting of all polynomials in A of content 1 is a Noetherian ring. Thus, since $A \hookrightarrow A_P$ is a flat embedding in a Noetherian ring, $S \hookrightarrow A_P$ is also. \qed

2In the meanwhile Cedó and Herbera have found a ring R over which the polynomial ring in n variables is Kerr but that in $n + 1$ variables is not (Fax of November 1994). See [C.H].
Note added in proof

The author has discovered an error in the proof of Theorem 2.2 in [F2]. The first sentence should read:

“If I is an ideal of R, then I is an annihilator of R iff IQ is an annihilator of Q and $IQ \cap R = I$.”

The third sentence should read:

“This also implies that if K is an ideal of Q, then $K \cap R \in \text{Ass } R$ iff $K \in \text{Ass } Q$.”

References

[C] V. Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), 72–76. MR 91c:16018

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Permanent address: 199 LONGVIEW DRIVE, PRINCETON, NEW JERSEY 08540