Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic behavior of nonexpansive sequences
and mean points


Authors: Jong Soo Jung and Jong Seo Park
Journal: Proc. Amer. Math. Soc. 124 (1996), 475-480
MSC (1991): Primary 47H09
DOI: https://doi.org/10.1090/S0002-9939-96-03039-0
MathSciNet review: 1291776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be a real Banach space with norm $\Vert \cdot \Vert $ and let $\{x_n\}_{n \ge 0}$ be a nonexpansive sequence in $E$ (i.e., $\Vert x_{i + 1} - x_{j + 1}\Vert \le \Vert x_i - x_j\Vert $ for all $i,\ j \ge 0$). Let $K = \bigcap _{n = 1}^{\infty }\overline{co}\{\{x_i - x_{i - 1}\}_{i \ge n}\}$. We deal with the mean point of $\{\frac{x_n}{n}\}$ concerning a Banach limit. We show that if $E$ is reflexive and $d = d(0,K)$, then $d = d(0,\overline{co}\{\frac{x_n - x_0}{n}\})$ and there exists a unique point $z_0$ with $\Vert z_0\Vert = d$ such that $z_0 \in \overline{co}\{\frac{x_n - x_0}{n}\}$. This result is applied to obtain the weak and strong convergence of $\{\frac{x_n}{n}\}$.


References [Enhancements On Off] (What's this?)

  • 1. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Acad. R. S. R., Bucutesti, 1976. MR 52:11666
  • 2. B. Djafari Rouhani, Asymptotic behavior of unbounded nonexpansive sequences in Banach spaces, Proc. Amer. Math. Soc. 117 (1993), 951--956. MR 93e:47073
  • 3. K. Fan and I. Glicksberg, Some geometric properties of the spheres in a normed linear space, Duke Math. J. 25 (1958), 553--568 MR 20:5421
  • 4. K. Goebel and S. Reich, Uniform convexity hyperbolic geometry and nonexpansive mappings, Dekker, New York and Basel, 1984. MR 86d:58012
  • 5. E. Kohlberg and A. Neyman, Asymptotic behavior of nonexpansive mappings in uniformly convex Banach spaces, Amer. Math. Monthly 88 (1981), 698--700. MR 83c:47077
  • 6. ------, Asymptotic behavior of nonexpansive mappings in normed linear spaces, Israel J. Math. 38 (1981), 269--275. MR 83g:47056
  • 7. A. Pazy, Asymptotic behavior of contractions in Hilbert space, Israel J. Math. 9 (1971), 235--240. MR 43:7988
  • 8. A. T. Plant and S. Reich, The asymptotics of nonexpansive iterations, J. Funct. Anal. 54 (1983), 308--319. MR 85a:47055
  • 9. S. Reich, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators, J. Math. Anal. Appl. 78 (1981), 113--126. MR 82c:47066
  • 10. ------, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators II, J. Math. Anal. Appl. 87 (1982), 134--146. MR 83e:47059
  • 11. W. Takahashi, The asymptotic behavior of nonlinear semigroups and invariant means, J. Math. Anal. Appl. 109 (1985), 130--139. MR 86k:47045

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47H09

Retrieve articles in all journals with MSC (1991): 47H09


Additional Information

Jong Soo Jung
Affiliation: Department of Mathematics, Dong–A University, Pusan 604–714, Korea
Email: jungjs@seanghak.donga.ac.kr.

Jong Seo Park
Affiliation: Department of Mathematics, Graduate School, Dong-A University, Pusan 604–714, Korea

DOI: https://doi.org/10.1090/S0002-9939-96-03039-0
Keywords: Asymptotic behavior, Banach limit, mean point, nonexpansive\linebreak \ sequence
Received by editor(s): March 24, 1994
Received by editor(s) in revised form: August 22, 1994
Additional Notes: This research was supported by the Korea Science and Engineering Foundation, project number 941-0100-035-2.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society