Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Curvature and finite domination


Author: Michael Weiss
Journal: Proc. Amer. Math. Soc. 124 (1996), 615-622
MSC (1991): Primary 53C21, 53C20; Secondary 57Q10
DOI: https://doi.org/10.1090/S0002-9939-96-03056-0
MathSciNet review: 1291795
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Upper bounds obtained by Gromov on the Betti numbers of certain closed Riemannian manifolds are shown to be upper bounds on the minimum number of cells in $CW$--spaces dominating such manifolds.


References [Enhancements On Off] (What's this?)

  • Abr1 U. Abresch, Lower curvature bounds, Toponogov's theorem, and bounded topology, Ann. Sci. École Norm. Sup. (4) 18 (1985), 651--670, MR 87j:53058.
  • Abr2 ------, Lower curvature bounds, Toponogov's theorem, and bounded topology, II, Ann. Sci. École Norm. Sup. (4) 20 (1987), 475--502, MR 89d:53080.
  • AlWa S. Aloff and N. L. Wallach, An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975), 93--97, MR 51:6851.
  • BK A. K. Bousfield and D. M. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, New York-Berlin, 1972, MR 51:1825.
  • Gro1 M.Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179--195, MR 82k:53062.
  • Gro2 ------, Almost flat manifolds, J. Diff. Geom. 13 (1978), 231--243, MR 80h:53041.
  • Groth A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119--221, MR 21:1328.
  • Se G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105--112,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C21, 53C20, 57Q10

Retrieve articles in all journals with MSC (1991): 53C21, 53C20, 57Q10


Additional Information

Michael Weiss
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003
Email: msweiss@math.lsa.umich.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03056-0
Keywords: Positive curvature, Betti numbers, homotopy direct limits
Received by editor(s): February 1, 1994
Received by editor(s) in revised form: February 22, 1994, and August 9, 1994
Communicated by: Christopher Croke
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society