The classification

of two-component Cuntz-Krieger algebras

Author:
Danrun Huang

Journal:
Proc. Amer. Math. Soc. **124** (1996), 505-512

MSC (1991):
Primary 46L35, 54H20; Secondary 46L55

DOI:
https://doi.org/10.1090/S0002-9939-96-03079-1

MathSciNet review:
1301504

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Cuntz-Krieger algebras with exactly one nontrivial closed ideal are classified up to stable isomorphism by the Cuntz invariant. The proof relies on Rørdam's classification of simple Cuntz-Krieger algebras up to stable isomorphism and the author's classification of two-component reducible topological Markov chains up to flow equivalence.

**Bo**M. Boyle,*Symbolic dynamics and matrices*, Combinatorial and Graph-Theoretic Problems in Linear Algebra, IMA Volumes in Math and Appl. Vol. 50 (R. Brualdi, S. Friedland, and V. Klee, eds.), Springer-Verlag, New York 1993, pp. 1--38, MR**94g:58062**.**BF**R. Bowen and J. Franks,*Homology for zero-dimensional basic sets*, Ann. of Math. (2)**106**(1977), 73--92, MR**56:16692**.**C1**J. Cuntz,*A class of C*-algebras and topological Markov chains II: reducible chains and the Ext-functor for C*-algebras*, Inventiones Math.**63**(1981), 25--40, MR**82f:46073b**.**C2**------,*The classification problem for the -algebras*, Geometric methods in operator algebras (H. Araki and E. G. Effros, eds.), Longman, New York, 1986, pp. 145--151, MR**88a:46081**.**C3**------, Personal communication.**C4**------,*On the homotopy groups of endomorphisms of a -algebra (with applications to topological Markov chains)*, Proc. of O.A.G.R. Conference in Neptun, Romania, Pitman, 1984, pp. 124--137, MR**86a:46093**.**CK**J. Cuntz and W. Krieger,*A class of -Algebras and topological Markov chains*, Inventiones Math.**56**(1980), 251--268, MR**82f:46073a**.**F**J. Franks,*Flow equivalence of subshifts of finite type*, Ergodic Theory Dynamical Systems**4**(1984), 53--66, MR**86j:58078**.**H**D. Huang,*Flow equivalence of reducible shifts of finite type*, Ergodic Theory Dynamical Systems**14**(1994), 695--720, CMP**95:04**.**PS**W. Parry and D. Sullivan,*A topological invariant for flows on one dimensional spaces*, Topology**14**(1975), 297--299.**R**M. Rørdam,*Classification of Cuntz-Krieger algebras*, -theory**9**(1995), 31--58.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46L35,
54H20,
46L55

Retrieve articles in all journals with MSC (1991): 46L35, 54H20, 46L55

Additional Information

**Danrun Huang**

Affiliation:
Department of Mathematics, University of Washington, Box 354350, Seattle, Washington 98195-4350

Email:
dhuang@math.washington.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03079-1

Keywords:
Cuntz-Krieger algebra,
stable isomorphism,
topological Markov chain,
flow equivalence

Received by editor(s):
June 13, 1994

Received by editor(s) in revised form:
August 30, 1994

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society