Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Sobolev imbedding theorems
in borderline cases


Authors: Nicola Fusco, Pierre Louis Lions and Carlo Sbordone
Journal: Proc. Amer. Math. Soc. 124 (1996), 561-565
MSC (1991): Primary 46E35
DOI: https://doi.org/10.1090/S0002-9939-96-03136-X
MathSciNet review: 1301025
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An imbedding theorem is given for functions whose gradient belongs to a class slightly larger than $L^n(\Omega)$, $\Omega\subset \mathbb{R}^n$.


References [Enhancements On Off] (What's this?)

  • ALT A. Alvino, P. L. Lions, and G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal. TMA 13 (1989), 185--220. MR 90c:90236
  • BFS H. Brèzis, N. Fusco, and C. Sbordone, Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal. 115 (1993), 425--431. MR 94j:26024
  • CLMS R. Coifman, P. L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247--286. MR 95d:46033
  • G J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 83g:30037
  • GT D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin and New York, 1977. MR 57:13109
  • Gr L. Greco, A remark on the equality $\det Df=\Det Df$, Differential and Integral Equations 6 (1993), 1089--1100. MR 95a:49104
  • IS T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal. 119 (1992), 129--143. MR 93i:49057
  • Mo J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077--1092. MR 46:662
  • Mu S. Müller, Higher integrability of determinants and weak convergence in $L^1$, J. Reine Angew. Math. 412 (1990), 20--34. MR 92b:49026
  • RR M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991. MR 92e:46059
  • T N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473--483. MR 35:7121

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46E35

Retrieve articles in all journals with MSC (1991): 46E35


Additional Information

Nicola Fusco
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli, via Cintia, 80126 Napoli, Italy

Pierre Louis Lions
Affiliation: CEREMADE, Place du Marèchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

Carlo Sbordone
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Napoli, via Cintia, 80126 Napoli, Italy

DOI: https://doi.org/10.1090/S0002-9939-96-03136-X
Received by editor(s): July 7, 1993
Received by editor(s) in revised form: September 12, 1994
Communicated by: Barbara Lee Keyfitz
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society