Rational nodal curves with no smooth Weierstrass points

Authors:
Arnaldo Garcia and R. F. Lax

Journal:
Proc. Amer. Math. Soc. **124** (1996), 407-413

MSC (1991):
Primary 14H55

DOI:
https://doi.org/10.1090/S0002-9939-96-03298-4

MathSciNet review:
1322924

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the rational curve with nodes obtained from the Riemann sphere by identifying 0 with and with for , where is a primitive th root of unity. We show that if is even, then has no smooth Weierstrass points, while if is odd, then has smooth Weierstrass points.

**1**R.D.M. Accola,*On generalized Weierstrass points on Riemann surfaces*, Modular functions in analysis and number theory, Lecture Notes Math. Stat., University of Pittsburgh, Pittsburgh, PA, 1978, pp. (1--19), MR**85f:14016**.**2**E. Ballico and L. Gatto,*Weierstrass points on singular curves*.**3**N. Chiarli,*A Hurwitz type formula for singular curves*, C. R. Math. Rep. Acad. Sci. Canada**6**(1984), 67--72, MR**85e:14037**.**4**W. Fulton,*Intersection Theory*, Springer, Berlin-Heidelberg-New York, 1984, MR**85k:14004**.**5**A. Garcia,*On Weierstrass points on Artin-Schreier extensions of*, Math. Nachr.**144**(1989), 233--239, MR**91f:14021**.**6**A. Garcia and R.F. Lax,*Weierstrass weight of Gorenstein singularities with one or two branches*, Manuscripta Math.**81**(1993), 361--378, MR**94j:14032**.**7**A. Garcia and R.F. Lax,*Weierstrass points on Gorenstein curves in arbitrary characteristic*, Comm. Algebra**22**(1994), 4841--4854, MR**95f:14063**.**8**A. Garcia and R.F. Lax,*On canonical ideals, intersection numbers, and Weierstrass points on Gorenstein curves*, J. Alg. (to appear).**9**R. F. Lax,*Weierstrass points on rational nodal curves*, Glasgow Math. J.**29**(1987), 131--140, MR**88a:14016**.**10**R.F. Lax and C. Widland,*Weierstrass points on rational nodal curves of genus 3*, Canad. Math. Bull.**30**(1987), 286--294, MR**88h:14039**.**11**J. Lewittes,*Automorphisms of compact Riemann surfaces*, Amer. J. Math.**85**(1963), 732--752, MR**28:4102**.**12**A. Oneto And E. Zatini,*Finite morphisms of Gorenstein curves*, Commutative algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math. No. 84, Dekker, New York, 1983, pp. (197--210), MR**84g:14051**.**13**K. Watanabe,*Certain invariant subrings are Gorenstein II*, Osaka J. Math.**11**(1974), 379--388, MR**50:7124**.**14**C. Widland,*Weierstrass points on Gorenstein curves*, Louisiana State University, 1984.**15**C. Widland and R.F. Lax,*Weierstrass points on Gorenstein curves*, Pac. J. Math.**142**(1990), 197--208, MR**91b:14037**.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
14H55

Retrieve articles in all journals with MSC (1991): 14H55

Additional Information

**Arnaldo Garcia**

Affiliation:
IMPA, Estrada Dona Castorina 110, 22.460 Rio de Janeiro, Brasil

Email:
garcia@impa.br

**R. F. Lax**

Affiliation:
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Email:
lax@math.lsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03298-4

Keywords:
Weierstrass point,
rational nodal curve

Received by editor(s):
September 14, 1994

Communicated by:
Eric Friedlander

Article copyright:
© Copyright 1996
American Mathematical Society