Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Operator-valued typically real functions


Author: Ky Fan
Journal: Proc. Amer. Math. Soc. 124 (1996), 765-771
MSC (1991): Primary 30-XX, 47-XX
DOI: https://doi.org/10.1090/S0002-9939-96-03002-X
MathSciNet review: 1285989
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Generalizing the classical typically real functions in complex analysis, we introduce the operator-valued typically real functions and show how to construct these functions.


References [Enhancements On Off] (What's this?)

  • [1] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983. MR 85j:30034
  • [2] M. Naimark, Positive definite operator functions on a commutative group, Izv. Akad. Nauk SSSR Math. Ser. 7 (1943), 237--244.
  • [3] Ch. Pommerenke, Univalent functions, Vandenhoeck-Ruprecht, Göttingen, 1975. MR 58:22526
  • [4] W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), 93--121.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30-XX, 47-XX

Retrieve articles in all journals with MSC (1991): 30-XX, 47-XX


Additional Information

Ky Fan
Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106
Address at time of publication: 1402 Santa Teresita Drive, Santa Barbara, California 93105-1948

DOI: https://doi.org/10.1090/S0002-9939-96-03002-X
Received by editor(s): June 14, 1994
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society