Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Remarks on the geometry of moduli spaces


Author: Kefeng Liu
Journal: Proc. Amer. Math. Soc. 124 (1996), 689-695
MSC (1991): Primary 14H15, 53C55
DOI: https://doi.org/10.1090/S0002-9939-96-03046-8
MathSciNet review: 1291785
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using Yau's Schwarz lemma and the Quillen determinant line bundles, several results about fibered algebraic surfaces and the moduli spaces of curves are improved and reproved.


References [Enhancements On Off] (What's this?)

  • 1. S. Ju. Arakelov, Families of algebraic curves with fixed degeneracies, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1269–1293 (Russian). MR 0321933
  • 2. A. Beauville, Le nombre minimun de fibres singulieres d'une courbe stable sur $P^1$, in Séminaire sur les pinceaux de courbes degenre au moins deux, ed. L. Szpiro, Asterisque 86 97--108.
  • 3. J.-M. Bismut and J.-B. Bost, Fibrés déterminants, métriques de Quillen et dégénérescence des courbes, Acta Math. 165 (1990), no. 1-2, 1–103 (French). MR 1064578, https://doi.org/10.1007/BF02391902
  • 4. G. Faltings, Arakelov’s theorem for abelian varieties, Invent. Math. 73 (1983), no. 3, 337–347. MR 718934, https://doi.org/10.1007/BF01388431
  • 5. M. Gromov, Kähler hyperbolicity and 𝐿₂-Hodge theory, J. Differential Geom. 33 (1991), no. 1, 263–292. MR 1085144
  • 6. G. Tian, Smoothness of the universal deformation space of compace Calabi-Yau manifolds and its Weil-Peterson metric, Mathematical Aspects of String Theory (S. T. Yau, ed.), World Scientific, Singapore, 1987, pp. 629--646. CMP 20:04
  • 7. G. Tian and S. T. Yau, Existence of Kahler-Einstein metrics on complete manifolds and their applications to algebraic geometry, Mathematical Aspects of String Theory (S. T. Yau, ed.), World Scientific, Singapore, 1987, pp. 574--628. CMP 20:04
  • 8. Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124
  • 9. Scott A. Wolpert, On obtaining a positive line bundle from the Weil-Petersson class, Amer. J. Math. 107 (1985), no. 6, 1485–1507 (1986). MR 815769, https://doi.org/10.2307/2374413
  • 10. Scott A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), no. 1, 119–145. MR 842050, https://doi.org/10.1007/BF01388794
  • 11. Scott A. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differential Geom. 31 (1990), no. 2, 417–472. MR 1037410
  • 12. Scott Wolpert, On the homology of the moduli space of stable curves, Ann. of Math. (2) 118 (1983), no. 3, 491–523. MR 727702, https://doi.org/10.2307/2006980
  • 13. Shing Tung Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), no. 1, 197–203. MR 0486659, https://doi.org/10.2307/2373880
  • 14. P. G. Zograf, Liouville action on moduli spaces and uniformization of degenerate Riemann surfaces, Algebra i Analiz 1 (1989), no. 4, 136–160 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 941–965. MR 1027464
  • 15. P. G. Zograf and L. A. Takhtadzhyan, Potential of the Weil-Petersson metric on Torelli space, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), no. Anal. Teor. Chisel i Teor. Funktsiĭ. 8, 110–120, 299 (Russian); English transl., J. Soviet Math. 52 (1990), no. 3, 3077–3085. MR 906849, https://doi.org/10.1007/BF02342926
  • 16. K. Ueno, Kodaira dimensions for certain fibre spaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 279–292. MR 0447241
  • 17. W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574
  • 18. A. N. Paršin, Algebraic curves over function fields. I, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1191–1219 (Russian). MR 0257086
  • 19. E. D'Hoker and D. H. Phong, Geometry of quantum strings, Mathematical Aspects of String Theory (S. T. Yau, ed.), World Scientific, Singapore, 1987, pp. 29--59. CMP 20:04

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14H15, 53C55

Retrieve articles in all journals with MSC (1991): 14H15, 53C55


Additional Information

Kefeng Liu
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138-2901
Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: liu@math.mit.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03046-8
Received by editor(s): June 7, 1994
Received by editor(s) in revised form: August 9, 1994
Communicated by: Peter Li
Article copyright: © Copyright 1996 American Mathematical Society