A theorem of Briançon-Skoda type

for regular local rings containing a field

Authors:
Ian M. Aberbach and Craig Huneke

Journal:
Proc. Amer. Math. Soc. **124** (1996), 707-713

MSC (1991):
Primary 13H05; Secondary 13A35, 13B22

MathSciNet review:
1301483

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a regular local ring containing a field. We give a refinement of the Briançon-Skoda theorem showing that if is a minimal reduction of where is -primary, then where and is the largest ideal such that . The proof uses tight closure in characteristic and reduction to characteristic for rings containing the rationals.

**[AH]**Ian M. Aberbach and Craig Huneke,*An improved Briançon-Skoda theorem with applications to the Cohen-Macaulayness of Rees algebras*, Math. Ann.**297**(1993), no. 2, 343–369. MR**1241812**, 10.1007/BF01459507**[AHT]**I. M. Aberbach, C. Huneke, and N. V. Trung,*Reduction numbers, Briançon-Skoda theorems and the depth of Rees rings*, Compositio Math.**97**(1995), 403--434.**[Ar]**M. Artin,*Algebraic structure of power series rings*, Algebraists’ homage: papers in ring theory and related topics (New Haven, Conn., 1981) Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 223–227. MR**685955****[BS]**Henri Skoda and Joël Briançon,*Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de 𝐶ⁿ*, C. R. Acad. Sci. Paris Sér. A**278**(1974), 949–951 (French). MR**0340642****[HH]**Melvin Hochster and Craig Huneke,*Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), no. 1, 31–116. MR**1017784**, 10.1090/S0894-0347-1990-1017784-6**[Hu]**Craig Huneke,*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), no. 2, 293–318. MR**894879**, 10.1307/mmj/1029003560**[HS]**C. Huneke and I. Swanson,*Cores of ideals in two-dimensional regular local rings*, Michigan Math. J.**42**(1995), 193--208.**[It]**Shiroh Itoh,*Integral closures of ideals generated by regular sequences*, J. Algebra**117**(1988), no. 2, 390–401. MR**957448**, 10.1016/0021-8693(88)90114-7**[L]**J. Lipman,*Adjoints of ideals in regular local rings*, Math. Res. Letters**1**(1994), 1--17. CMP**95:05****[LS]**Joseph Lipman and Avinash Sathaye,*Jacobian ideals and a theorem of Briançon-Skoda*, Michigan Math. J.**28**(1981), no. 2, 199–222. MR**616270****[LT]**Joseph Lipman and Bernard Teissier,*Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals*, Michigan Math. J.**28**(1981), no. 1, 97–116. MR**600418****[NR]**D. G. Northcott and D. Rees,*Reductions of ideals in local rings*, Proc. Cambridge Philos. Soc.**50**(1954), 145–158. MR**0059889****[RS]**D. Rees and Judith D. Sally,*General elements and joint reductions*, Michigan Math. J.**35**(1988), no. 2, 241–254. MR**959271**, 10.1307/mmj/1029003751**[Sp]**M. Spivakovsky,*Smoothing of ring homomorphisms, approximation theorems and the Bass-Quillen conjecture*, preprint.**[Sw]**Irena Swanson,*Joint reductions, tight closure, and the Briançon-Skoda theorem*, J. Algebra**147**(1992), no. 1, 128–136. MR**1154678**, 10.1016/0021-8693(92)90256-L

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13H05,
13A35,
13B22

Retrieve articles in all journals with MSC (1991): 13H05, 13A35, 13B22

Additional Information

**Ian M. Aberbach**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Email:
aberbach@msindy8.cs.missouri.edu

**Craig Huneke**

Affiliation:
Department of Mathematics, Purdue University, W. Lafayette, Indiana 47907

Email:
huneke@math.purdue.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-96-03058-4

Keywords:
Briancon-Skoda theorems,
integral closure,
tight closure

Received by editor(s):
June 21, 1994

Received by editor(s) in revised form:
September 7, 1994

Additional Notes:
Both authors were partially supported by the National Science Foundation.

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 1996
American Mathematical Society