Comparative probability

on von Neumann algebras

Author:
Simba A. Mutangadura

Journal:
Proc. Amer. Math. Soc. **124** (1996), 907-918

MSC (1991):
Primary 81P99

DOI:
https://doi.org/10.1090/S0002-9939-96-03097-3

MathSciNet review:
1301521

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We continue here the study begun in earlier papers on implementation of comparative probability by states. Let be a von Neumann algebra on a Hilbert space and let denote the projections of . A comparative probability (CP) on (or more correctly on is a preorder on satisfying:

- with for some .
- If , then either or .
- If , and are all in and , , then .

**1.**Huzihiro Araki, Mi-soo Bae Smith, and Larry Smith,*On the homotopical significance of the type of von Neumann algebra factors*, Comm. Math. Phys.**22**(1971), 71–88. MR**0288587****2.**Bruce Blackadar,*𝐾-theory for operator algebras*, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR**859867****3.**Andrew M. Gleason,*Measures on the closed subspaces of a Hilbert space*, J. Math. Mech.**6**(1957), 885–893. MR**0096113****4.**J. Gunson,*Physical states on quantum logics. I*, Ann. Inst. H. Poincaré Sect. A (N.S.)**17**(1972), 295–311 (English, with French summary). MR**0336364****5.**Stanisław Goldstein and Adam Paszkiewicz,*Comparison of states and Darboux-type properties in von Neumann algebras*, Math. Scand.**63**(1988), no. 2, 220–232. MR**1018812**, https://doi.org/10.7146/math.scand.a-12236**6.**Richard V. Kadison and John R. Ringrose,*Fundamentals of the theory of operator algebras. Vol. II*, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR**859186****7.**G. Kalmbach,*Measures and Hilbert lattices*, World Scientific Publishing Co., Singapore, 1986. MR**867884****8.**J. L. Kelly,*General topology*, Van Nostrand, Princeton, NJ, 1955. MR**16:1136C****9.**Shûichirô Maeda,*Probability measures on projections in von Neumann algebras*, Rev. Math. Phys.**1**(1989), no. 2-3, 235–290. MR**1070091**, https://doi.org/10.1142/S0129055X89000122**10.**Simba A. Mutangadura,*Implementation of comparative probability by normal states. Infinite-dimensional case*, Comm. Math. Phys.**132**(1990), no. 3, 581–592. MR**1069838****11.**Simba A. Mutangadura,*Implementation of comparative probability by states*, Publ. Res. Inst. Math. Sci.**28**(1992), no. 2, 315–327. MR**1152760**, https://doi.org/10.2977/prims/1195168666**12.**------,*Comparative probability on the algebra of compact operators*, Quaestiones Math.**18**(1995), 155--166.**13.**Wilhelm Ochs,*Gleason measures and quantum comparative probability*, Quantum probability and applications, II (Heidelberg, 1984) Lecture Notes in Math., vol. 1136, Springer, Berlin, 1985, pp. 388–396. MR**819519**, https://doi.org/10.1007/BFb0074487**14.**Masamichi Takesaki,*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728****15.**Jaroslav Zemánek,*Idempotents in Banach algebras*, Bull. London Math. Soc.**11**(1979), no. 2, 177–183. MR**541972**, https://doi.org/10.1112/blms/11.2.177

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
81P99

Retrieve articles in all journals with MSC (1991): 81P99

Additional Information

**Simba A. Mutangadura**

Email:
mutanga@zimbix.uz.zw

DOI:
https://doi.org/10.1090/S0002-9939-96-03097-3

Received by editor(s):
July 23, 1993

Received by editor(s) in revised form:
August 30, 1994

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society