THE p^n THEOREM FOR SEMISIMPLE HOPF ALGEBRAS

AKIRA MASUOKA

(Communicated by Ken Goodearl)

Abstract. We give an algebraic version of a result of G. I. Kac, showing that a semisimple Hopf algebra A of dimension p^n, where p is a prime and $n > 0$, over an algebraically closed field of characteristic 0 contains a non-trivial central group-like. As an application we prove that, if $n = 2$, A is isomorphic to a group algebra.

INTRODUCTION

Throughout the paper we work over an algebraically closed field k of characteristic 0.

Let p be a prime. Recently Y. Zhu [Z] proved that a Hopf algebra of dimension p is isomorphic to the group algebra kC_p of the cyclic group C_p of order p. For this, he reformulated G. I. Kac’s Theorem [K, Theorem 2] on ‘ring groups’. In this paper, first we give an algebraic version of another result [K, Corollary 2] of Kac to show that a semisimple Hopf algebra of dimension p^n with a positive integer n contains a non-trivial central group-like. Secondly, applying the first result, we classify all semisimple Hopf algebras of dimension p^2. Namely we prove that such a Hopf algebra is isomorphic to the group algebra kC_{p^2} or $k(C_p \times C_p)$.

THE p^n THEOREM

Let A be a finite-dimensional Hopf algebra with antipode S. Suppose that A is semisimple as an algebra, or equivalently cosemisimple as a coalgebra, or equivalently involutory, namely $S \circ S = \text{id}$ (See [LR1, Theorem 3.3]; [LR2, Theorems 1, 3]).

Denote by A^* the dual Hopf algebra $\text{Hom}_k(A, k)$ of A. Let λ be an integral in A^* such that $\lambda(1) = (\dim A)1$. Then it follows by [LR2, Proposition 1] that λ is the character of the regular representation of A, that is, $\lambda(a)$ for $a \in A$ equals the trace of the right (or left) multiplication $b \mapsto ba$ ($b \in A$) by a. Regard A^* as a right A-module with the action α determined by

$$(f \alpha)(a) = f(bS(a)) \quad (f \in A^*, a, b \in A).$$

Then one sees from [Sw, Theorem 5.1.3] that

$$\alpha : A \rightarrow A^*, \quad \alpha(a) = \lambda \alpha a$$

Received by the editors April 18, 1994 and, in revised form, September 29, 1994.

1991 Mathematics Subject Classification. Primary 16W30.

©1996 American Mathematical Society
gives a right A-linear and left A^*-linear isomorphism, where A has the left A^*-module structure arising from the natural right A-comodule structure.

Lemma. α gives linear isomorphisms between each pair in (a), (b) below.

(a) The subalgebra $kG(A)$ of A spanned by the group-likes $G(A)$ and the sum of the 1-dimensional ideals of A^*.

(b) The center $Z(A)$ of A and the subalgebra $C_k(A)$ of A^* spanned by the characters of A.

Proof. For (a), one has only to see that α gives a 1-1 correspondence between the 1-dimensional left A^*-submodules of A and of A^*. (Note that a 1-dimensional left ideal of A^* is actually two-sided since A^* is semisimple.)

For (b), we see first that the antipode S gives a permutation of the primitive central idempotents in A, which form a k-basis of $Z(A)$. Let e be a primitive central idempotent in A and let χ be the irreducible character corresponding to e (that is, the character of the representation $A \to eA$). Then it follows that $\alpha(S(e)) = \chi(1)\chi(\neq 0)$, where $\chi(1)$ equals the degree of χ. From these we have $Z(A) \simeq C_k(A)$.

Corollary. There is a 1-1 correspondence $g \leftrightarrow I$ between the central group-likes g in A and the 1-dimensional ideals I of A^* included in $C_k(A)$, such that $1 \leftrightarrow k\lambda$.

Theorem 1. Suppose that the dimension $\dim A = p^n$, where p is a prime and n is a positive integer. Then there is a non-trivial central group-like in A.

Proof. By the Corollary it suffices to prove that there is a 1-dimensional ideal $I \neq k\lambda$ which is included in $C_k(A)$.

Let $e_1 = \frac{1}{\dim A^*} \lambda$, e_2, \ldots, e_m be orthogonal primitive idempotents in $C_k(A)$ whose sum is 1. Then we have

$$A^* = k\lambda \oplus e_2A^* \oplus \cdots \oplus e_mA^*.$$

Since each e_iA^* divides p^n by [Z, Theorem 1], it follows by counting dimensions that there is $2 \leq i \leq m$ such that $\dim e_iA^* = 1$. This e_iA^* is the required I.

This theorem is an algebraic (and hopefully accessible) version of a result [K, Corollary 2] of G. I. Kac on ‘ring groups’.

THE p^2 THEOREM

Theorem 2. A semisimple Hopf algebra of dimension p^2 with a prime p is isomorphic to the group algebra kC_{p^2} or $k(C_p \times C_p)$, where C_n is the cyclic group of order n.

Proof. Let A be a semisimple Hopf algebra of dimension p^2. It suffices to show that A is commutative and cocommutative.

It follows from Theorem 1 and [NZ, Theorem 7] that there is a group G of group-likes in A such that $G \subset Z(A)$ and the order $|G| = p$. Since $G \subset Z(A)$, the Hopf subalgebra $K = kG$ is normal, so that we have an extension [M1, Definition 1.3]

$$1 \rightarrow K \rightarrow A \rightarrow H \rightarrow 1$$

of finite-dimensional Hopf algebras. Since this is cleft (roughly $A \simeq K \otimes H$) by [S, Theorem 2.4], it follows that $\dim H = p$, so that $H \simeq kC_p$ by Zhu’s Theorem [Z, Theorem 2] cited in the Introduction. One sees immediately from [DT, Theorem 11] that, as an algebra including K, A is a crossed product of H over K. In the
terminology of group theory, \(A \) is a crossed product \(K \ast C_p \) [P, p. 2] of \(C_p \) over \(K \). Here the associated action of \(C_p \) on \(K \) is trivial, since \(K \) is central in \(A \). Hence \(A \) is a twisted group ring \(K'[C_p] \) [P, p. 4], a cyclic extension of a central subalgebra. This is trivially commutative. Thus \(A \) is commutative. By applying the result to \(A^* \), it follows that \(A \) is cocommutative.

Using this result we classify all semisimple Hopf algebras of dimension \(p^3 \) with an odd prime \(p \) in the final version of [M3], while such Hopf algebras of dimension \(8 = 2^3 \) are classified in [M2].

ACKNOWLEDGMENT

I would like to thank the referee for his or her suggestions to improve the exposition of the paper.

REFERENCES

Department of Mathematics, Shimane University, Matsue, Shimane 690, Japan