Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Parametrizing maximal compact subvarieties


Author: Jodie D. Novak
Journal: Proc. Amer. Math. Soc. 124 (1996), 969-975
MSC (1991): Primary 22E46; Secondary 22E45
DOI: https://doi.org/10.1090/S0002-9939-96-03153-X
MathSciNet review: 1301042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For the Lie group $G = Sp(n, {\mathbb R} )$, let $D_i $ be the open $G-$orbit of Lagrangian planes of signature $(i,n-i)$ in the generalized flag variety of Lagrangian planes in ${\mathbb C} ^{2n}$. For a suitably chosen maximal compact subgroup $K$ of $G$ and a base point $x_i$ we have that the $K-$orbit of $x_i$ is a maximal compact subvariety of $D_i $. We show that for $i = 1, \dots , n-1$ the connected component containing $Kx_i $ in the space of ${G_{\mathbb C}} $ translates of $Kx_i $ which lie in $D_i $ is biholomorphic to $G/K \times {\overline{G/K}}$, where ${\overline{G/K}}$ denotes $G/K$ with the opposite complex structure.


References [Enhancements On Off] (What's this?)

  • [BE] R. J. Baston and M. G. Eastwood, The Penrose transform: Its interaction with representation theory, Clarendon Press, Oxford, 1989. MR 92j:32112
  • [DZ] E. G. Dunne and R. Zierau, Twistor theory for indefinite Kähler symmetric spaces,
    Contemp. Math., vol. 154, Amer. Math. Soc., Providence, RI, 1993, pp. 117--132 . MR 95d:22013
  • [K] A.W. Knapp, Representation theory of semisimple groups, Princeton Math. Ser., no. 36, Princeton University Press, Princeton, NJ, 1986. MR 87j:22022
  • [PR] C. M. Patton and H. Rossi, Unitary structures on cohomology, Trans. Amer. Math. Soc. 290 (1985), 235--258. MR 87g:22014
  • [PR1] ------, Cohomology on complex homogeneous manifolds with compact subvarieties, Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1986, pp. 199--211. MR 88a:32037
  • [SW] W. Schmid and J. A. Wolf, A vanishing theorem for open orbits on complex flag manifolds, Proc. Amer. Math. Soc. 92 (1984), 461--464. MR 85i:32029
  • [We] R. O. Wells, Parametrizing the compact submanifolds of a period matrix domain by a Stein manifold, Symposium on Several Complex Variables, Park City, Utah, 1970 (R. M. Brooks, ed), Lecture Notes in Math., vol. 184, Springer-Verlag, New York, 1971, pp. 121--150. MR 46:7555
  • [WW] R. O. Wells and J. A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math. (2) 105 (1977), 397--448. MR 56:5955
  • [W] J. A. Wolf, Fine structure of Hermitian symmetric spaces, Pure Appl. Math. 8 (1972), 271--357. MR 53:8516
  • [W1] ------, The Stein condition for cycle spaces of open orbits on complex flag manifolds, Ann. of Math. (2) 136 (1992), 541--555. MR 93m:32045

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22E46, 22E45

Retrieve articles in all journals with MSC (1991): 22E46, 22E45


Additional Information

Jodie D. Novak
Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078-0613
Address at time of publication: Department of Mathematical Sciences, Ball State University, Muncie,Indiana 47303
Email: novak@math.bsu.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03153-X
Keywords: Generalized flag variety, Penrose transform, symplectic group
Received by editor(s): August 16, 1994
Communicated by: Roe Goodman
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society