Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak-type weights and normable Lorentz spaces


Authors: María J. Carro, Alejandro García del Amo and Javier Soria
Journal: Proc. Amer. Math. Soc. 124 (1996), 849-857
MSC (1991): Primary 42B25, 46E30
DOI: https://doi.org/10.1090/S0002-9939-96-03214-5
MathSciNet review: 1307501
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Lorentz space $ \Lambda ^1(w)$ is a Banach space if and only if the Hardy-Littlewood maximal operator $M$ satisfies a certain weak-type estimate. We also consider the case of general measures. Finally, we study some properties of several indices associated to these spaces.


References [Enhancements On Off] (What's this?)

  • [AM] M.A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727--735. MR 90k:42034
  • [BS] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, New York, 1988. MR 89e:46001
  • [CS1] M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112 (1993), 480--494. MR 94f:42025
  • [CS2] ------, Boundedness of some integral operators, Canad. J. Math. 45 (1993), 1155--1166. MR 95d:47064
  • [CS3] ------, The Hardy--Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc. (to appear).
  • [GR] J. García-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related topics, Math. Stud., vol. 116, North-Holland, Amsterdam, 1985. MR 87d:42023
  • [GuR] M. de Guzmán and B. Rubio, Problemas, conceptos y métodos del análisis matemático I, Ediciones Pirámide, 1990.
  • [Hu] R.A. Hunt, On $L(p,q)$ spaces, Enseign. Math. (2) 12 (1966), 249--276. MR 36:6921
  • [KPS] S.G. Krein, Ju.I. Petunin, and E.M. Semenov, Interpolation of linear operators, Transl. Math. Monographs, vol. 54, Amer. Math. Soc., Providence, RI, 1982. MR 84j:46013
  • [Lo] G.G. Lorentz, On the theory of spaces $\Lambda $, Pacific J. Math. 1 (1951), 411--429.
  • [Ma] L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1985). MR 87k:46059
  • [Ne] C.J. Neugebauer, Weighted norm inequalities for averaging operators of monotone functions, Publ. Mat. 35 (1991), 429--447. MR 93m:26042
  • [Ra] Y. Raynaud, On Lorentz-Sharpley spaces, Israel Math. Conf. Proc. 5 (1992), 207--228. MR 94c:46061
  • [Sa] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145--158. MR 91d:26026
  • [Sj] P. Sjögren, How to recognize a discrete maximal function, Indiana Univ. Math. J. 37 (1988), 891--898. MR 90f:42020

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 42B25, 46E30

Retrieve articles in all journals with MSC (1991): 42B25, 46E30


Additional Information

María J. Carro
Affiliation: Departamento Matemàtica Aplicada i Anàlisi, Universidad de Barcelona, 08071 Barcelona, Spain
Email: carro@cerber.mat.ub.es

Alejandro García del Amo
Affiliation: Departamento Análisis Matemático, Facultad de Ciencias, Matemáticas, Universidad Complutense, 28040 Madrid, Spain
Address at time of publication: Departamento Matemática Pura y Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain
Email: garciada@mat.ucm.es

Javier Soria
Affiliation: Departamento Matemàtica Aplicada i Anàlisi, Universidad de Barcelona, 08071 Barcelona, Spain
Email: soria@cerber.mat.ub.es

DOI: https://doi.org/10.1090/S0002-9939-96-03214-5
Received by editor(s): September 14, 1994
Additional Notes: The first and third authors were partially supported by DGICYT PB94–0879. \endgraf The second author was partially supported by DGICYT PB94–0243.
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society