Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Every Cech-analytic Baire semitopological group
is a topological group


Author: Ahmed Bouziad
Journal: Proc. Amer. Math. Soc. 124 (1996), 953-959
MSC (1991): Primary 22A20, 54E18, 54H15, 57S25
DOI: https://doi.org/10.1090/S0002-9939-96-03384-9
MathSciNet review: 1328341
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Among other things, we prove the assertion given in the title. This solves a problem of Pfister.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Arhangel'skii, On a class containing all metric and locally bicompact spaces, Dokl. Akad. Nauk. SSSR 151 (1963), 751--754; Eng. Trans., Sov. Math. Dokl. 4 (1963), 1051--1055. MR 27:2959
  • 2. A. Bouziad, The Ellis theorem and continuity in groups, Topol. Appl. 50 (1993), 73--80. MR 94i:22002
  • 3. N. Brand, Another note on the continuity of the inverse, Arch. Math. 39 (1982), 241--245. MR 84b:22001
  • 4. L. G. Brown, Topological complete groups, Proc. Amer. Math. Soc. 35 (1972), 593--600. MR 46:7435
  • 5. J. P. R. Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), 455--461. MR 82h:54012
  • 6. R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957), 372--373. MR 18:745d
  • 7. R. Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119--125. MR 19:561b
  • 8. R. Engelking, General Topology, Heldermann Verlag, Berlin (1989). MR 91c:54001
  • 9. R. V. Fuller, Relations among continuous and various non continuous functions, Pac. J. Math. 25 (1968), 495--509.MR 37:3536
  • 10. G. Gruenhage, Generalized metric spaces, In K. Kunen and J. E. Vaughan (eds), Handbook of Set-Theoretic Topology (Elsevier Science Publishers) (1984), 423--501. MR 86h:54038
  • 11. G. Hansel and J. P. Troallic, Quasicontinuity and Namioka's Theorem, Topol. Appl. 46 (1992), 135--149. MR 94a:54047
  • 12. R. W. Hansell, Descriptive Topology, In M. Hu\v{s}ek and J. van Mill (edts), Recent Progress in General Topology (Elsevier Science Publishers) (1992), 275--315. CMP 93:15
  • 13. J. E. Jayne and C. A. Rogers, Borel selectors for upper semicontinuous set-valued maps, Acta Math. 155 (1985), 41--79. MR 87a:28011
  • 14. S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184--197.
  • 15. E. Michael, A note on closed maps and compact sets, Israel J. Math. 2 (1964), 173--176. MR 31:1659
  • 16. D. Montgomery, Continuity in topological groups, Bull. Amer. Math. Soc. 42 (1936), 879--882.
  • 17. H. Pfister, Continuity of the inverse, Proc. Amer. Math. Soc. 95 (1985), 312--314. MR 87a:22004
  • 18. E. A. Reznichenko, Continuity in complete groups, Abstract in Tenth Summer Conference on General Topology and Applications, Amsterdam 1994, p. 135.
  • 19. A. D. Wallace, The structure of topological semigroups, Bull. Amer. Math. Soc. 61 (1955), 95--112. MR 16:796d
  • 20. W. Zelazko, A theorem on $B_0$ division algebras, Bull. Acad. Pol. Sci. 8 (1960), 373--375. MR 23:A3198

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 22A20, 54E18, 54H15, 57S25

Retrieve articles in all journals with MSC (1991): 22A20, 54E18, 54H15, 57S25


Additional Information

Ahmed Bouziad
Affiliation: Analyse et Modèles Stochastiques, URA C.N.R.S. 1378, U.F.R. des Sciences de Rouen, 76821 Mont Saint Aignan cedex, France
Email: ahmed.bouziad@univ-rouen.fr

DOI: https://doi.org/10.1090/S0002-9939-96-03384-9
Keywords: Semitopological group, topological group, generalized continuity, fragmentability
Received by editor(s): January 19, 1994
Communicated by: Franklin D. Tall
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society