RIGHT ADJOINT FOR THE SMASH PRODUCT FUNCTOR

FRANCESCA CAGLIARI

(Communicated by Andreas R. Blass)

Abstract. The smash-product functor \((-) \wedge (X, x_0)\) in the category Top, of pointed topological spaces has a right adjoint for any choice of the base point \(x_0\), if and only if the topological space \(X\) is quasi-locally compact, that is, if and only if the product functor \((-) \times X\) has a right adjoint in the category Top of topological spaces.

Introduction

A space \(X\) is cartesian in the category of topological spaces and continuous maps if the product functor \((-) \times X\) has a right adjoint. This means that there exists a proper and admissible topology on the space of maps \(Y^X\) between \(X\) and \(Y\) (for any topological space \(Y\)) [D]. Cartesian objects in Top were characterized by Day and Kelly [D-K]. They are the quasi-locally compact spaces [H-L].

The problem of the existence of a proper and admissible topology on the function space \((Y, y_0)\)\(^{(X,x_0)}\) consisting of the maps of \(Y\) to \(X\) preserving base points is related to the adjointness of the smash-product functor. It is known that this functor has a right adjoint whenever \(X\) is locally compact and Hausdorff; in this case the topology on \((Y, y_0)\)\(^{(X,x_0)}\) is the compact open topology [M].

In this paper, it is proved that the spaces \((X, x_0)\) for which the functor \((-) \wedge (X, x_0)\) has a right adjoint are exactly the spaces \(X\) which are cartesian in Top, independently of the choice of \(x_0\). That is, the existence of a proper and admissible topology on \((Y, y_0)\)\(^{(X,x_0)}\) for any \((Y, y_0)\) is equivalent to the existence of a proper and admissible topology on the whole space of maps from \(X\) to \(Y\), for any \(Y\).

Smash-product and adjunction

We can consider, in Top, the endofunctor \((-) \wedge (X, x_0)\) and ask when it has a right adjoint. When it exists we will call it \(\mathcal{G}_X(x_0)\).

In the case of \(X\) cartesian in Top, we indicate by \(Y^X\) the power object and by \((Y, y_0)\)\(^{(X,x_0)}\) the subspace of \(Y^X\) given by \(f \in Y^X\{f(x_0) = y_0\}\) with base point the constant \(y_0\)-valued map.

Theorem 1. If \(X\) is cartesian in Top, then \((-) \wedge (X, x_0)\) has a right adjoint, for every \(x_0\) in \(X\). Moreover \(\mathcal{G}_X(x_0)(Y, y_0) = (Y, y_0)\)\(^{(X,x_0)}\).
Proof. Suppose X is cartesian in \textbf{Top} and take any space Y; let $\hat{e}: Y^X \times X \to Y$ be the evaluation map. Consider Y^X the subspace $\mathcal{G}_{(X,x_0)}(Y,y_0) = \{f \in Y^X | f(x_0) = y_0\}$ and the restriction e_1 of \hat{e} to $\mathcal{G}_{(X,x_0)}(Y,y_0) \times (X,x_0)$ which is a map in \textbf{Top}. The map e_1 is compatible with the quotient in the definition of the smash-product, and so we can consider the map $e: \mathcal{G}_{(X,x_0)}(Y,y_0) \wedge (X,x_0) \to (Y,y_0)$ induced by e_1. We note that $e(f, x) = f(x)$.

Let $f: (Z, z_0) \wedge (X,x_0) \to (Y,y_0)$ be a map in \textbf{Top}, and consider the quotient $p: (Z, z_0) \times (X,x_0) \to (Z, z_0) \wedge (X,x_0)$ which gives the smash-product. Since X is cartesian in \textbf{Top}, related to $fp: (Z, z_0) \times (X,x_0) \to (Y,y_0)$ there is an $(fp)_1: Z \to Y^X$ such that $\hat{e}(fp)_1 \times \text{id}_X = fp$. The map $(fp)_1$ preserves the base points and its image is a subspace of $\mathcal{G}_{(X,x_0)}(Y,y_0)$, so we can factor $(fp)_1$ through the inclusion of $\mathcal{G}_{(X,x_0)}(Y,y_0)$ in Y^X and consider the first factor $(fp)_2$ as a map in \textbf{Top}. In such a way we obtain $(fp)_2 \times \text{id}_X: (Z, z_0) \times (X,x_0) \to (Y,y_0)$. By construction $(fp)_2 \times \text{id}_X$ is compatible with the quotient p, and the proof is complete.

Theorem 2. If the functor $(-) \wedge (X,x_0)$ has a right adjoint, then $\mathcal{G}_{(X,x_0)}(Y,y_0)$ is a space whose underlying set is in natural bijective correspondence with $(Y,y_0)^{(X,x_0)}$, the count of the adjunction is the map $e: \mathcal{G}_{(X,x_0)}(Y,y_0) \wedge (X,x_0) \to (Y,y_0)$ such that $e(f,x) = f(x)$ and the base point corresponds to the constant function valued at y_0.

Proof. Let D_2 be the space with two points a, b and the discrete topology. By the adjunction, there is a bijection between $(Y,y_0)^{(D_2, a)} \wedge (X,x_0)$ and $(\mathcal{G}_{(X,x_0)}(Y,y_0))^{(D_2, a)}$, and on the other side $(D_2, a) \wedge (X,x_0)$ is homeomorphic to (X,x_0) and $(\mathcal{G}_{(X,x_0)}(Y,y_0))^{(D_2, a)}$ is in bijection with $\mathcal{G}_{(X,x_0)}(Y,y_0)$; so the first part of the theorem is proved.

Any map $f: (X,x_0) \to (Y,y_0)$ can be considered as a map from $(D_2, a) \wedge (X,x_0)$ into (Y,y_0). As a consequence, by the adjunction, for any f, there is an $f_1: (D_2, a) \to \mathcal{G}_{(X,x_0)}(Y,y_0)$ such that $e(f_1 \wedge \text{id}_X) = f$; so $e(f,x) = f(x)$. Finally, given the one point space \bullet, and the map $h: \bullet \wedge (X,x_0) \to (Y,y_0)$, there is a map $h_1: \bullet \to \mathcal{G}_{(X,x_0)}(Y,y_0)$ such that $h_1(\bullet)$ is the base point of $\mathcal{G}_{(X,x_0)}(Y,y_0)$. This completes the proof.

We denote by S the Sierpinski space with the two points 0 and 1 and $\{0\}$ the nontrivial open set. If the functor $(-) \wedge (X,x_0)$ has a right adjoint, as a consequence of Theorem 2, $\mathcal{G}_{(X,x_0)}(S,0)$ can be identified with the set of the open sets U of X such that $x_0 \in U$ and base point the open set X. On the other hand, $\mathcal{G}_{(X,x_0)}(S,1)$ can be identified with the set of the open sets U of X such that $x_0 \notin U$ and base point the empty set.

The following Lemma characterizes convergent nets of the spaces $\mathcal{G}_{(X,x_0)}(S,0)$ (respectively, $\mathcal{G}_{(X,x_0)}(S,1)$), while Lemma 4 proves that the open sets of these spaces are Scott-open [H-L].

Lemma 3. Suppose $(-) \wedge (X,x_0)$ admits a right adjoint. A net U_i converges to U in $\mathcal{G}_{(X,x_0)}(S,0)$ (respectively, $\mathcal{G}_{(X,x_0)}(S,1)$) if and only if:

\[(*) \quad \text{for each } x \in U \text{ and for each net } x_\alpha \text{ converging to } x \text{ in } X, \text{ there is an } i' \text{ and a } X' \text{ such that } x_\lambda \in U_i, \text{ for every } i > i' \text{ and } x > X'. \]

Proof. Let U_i converge to U in $\mathcal{G}_{(X,x_0)}(S,0)$ (respectively, $\mathcal{G}_{(X,x_0)}(S,1)$), $x \in U$ and x_λ converge to x in X. Consider the count of the adjunction $e: \mathcal{G}_{(X,x_0)}(S,0) \wedge
(X,x₀) → (S,0) (respectively, (S,1)) and the quotient map p: G_{(X,x₀)}(S,0) × (X,x₀) → G_{(X,x₀)}(S,0) ∧ (X,x₀) (respectively, (S,1)). Since (Uᵢ, xₙ) converges to (U, x) and the map ep is continuous with ep(U, x) = 0, then ep(Uᵢ, xₙ) converges to 0. In S the nets converging to 0 are eventually constant, so there is an i' and a λ' such that, for every i > i' and λ > λ', ep(Uᵢ, xₙ) = 0, that is xₙ ∈ Uᵢ.

Vice versa, suppose Uᵢ is a net in G_{(X,x₀)}(S,0) and U ∈ G_{(X,x₀)}(S,0) (respectively, G_{(X,x₀)}(S,1)) fulfilling condition (∗). Consider the space I ∪ {•}, where I is the direct set of the net Uᵢ. • is a maximum point whose base-neighbourhoods are the sets of the form I_j = {•} ∪ {i ∈ I | i ≥ j}, j ∈ I, and the points of I are isolated. We can assume, without changing the nature of the net Uᵢ, that there exists a point i₀ ∈ I, such that Uᵢ₀ = X (respectively, Uᵢ₀ = 0). Moreover, we consider the map α: (I ∪ {•}, i₀) → G_{(X,x₀)}(S,0) (respectively, G_{(X,x₀)}(S,1)) so defined by α(0) = Uᵢ, α(•) = U. We prove that the map α is continuous, which implies the convergence of the net Uᵢ to U. By the existence of the right adjoint, α is continuous if and only if the corresponding map e(α ∧ Id_X) = π: (I ∪ {•}, i₀) ∧ (X,x₀) → (S,0) (respectively, (S,1)) is continuous; so we will prove the continuity of π. To this aim we can consider the quotient map q: (I ∪ {•}, i₀) × (X,x₀) → (I ∪ {•}, i₀) ∧ (X,x₀) induced by the smash-product and prove the continuity of πq. By the adjunction (πq)⁻¹(0) = {(i, x) | x ∈ Uᵢ, i ∈ I} ∪ {(•, x) | x ∈ U}. Since every point of I is isolated and each Uᵢ is open, the set {(i, x) | x ∈ Uᵢ, i ∈ I} is open since it is union of open sets, therefore each (i, x) of (πq)⁻¹(0) belongs to its interior. Take now (•, x) ∈ (πq)⁻¹(0) (that is x ∈ U); the topology defined on (I ∪ {•}) and condition (∗) implies that any net converging to (•, x) in the product space (I ∪ {•}, i₀) × (X,x₀) is eventually in (αq)⁻¹(0), that is, (•, x) belongs to the interior of (πq)⁻¹(0). We can conclude that (αq)⁻¹(0) is open and so, α is continuous.

Lemma 4. Suppose (−) ∧ (X,x₀) admits a right adjoint, and suppose H is open in G_{(X,x₀)}(S,0) (respectively, G_{(X,x₀)}(S,1)); then H is Scott-open [H-L], i.e.:

(a) If U, U' are open in X, U ⊆ H and U' ⊇ U (with x₀ ∉ U' when H is open in G_{(X,x₀)}(S,1)), then U' ∈ H.
(b) If V = {Uᵢ | i ∈ I} is a family of open subsets of X and U = ∪(Uᵢ | i ∈ I) ∈ H, there exists a finite subfamily of V whose union belongs to H.

Proof. (a) Suppose U, U' open in X, U ⊆ H and U' ⊇ U (x₀ ∉ U' in the case when H is open in G_{(X,x₀)}(S,1)). The constant sequence whose value is U' converges to U in G_{(X,x₀)}(S,0) (respectively, G_{(X,x₀)}(S,1)) because it fulfils the condition (∗) in Lemma 3. Since H is open and U belongs to H, there must be an element of the constant sequence belonging to H; consequently U' ∈ H.

(b) Let U = ∪(Uᵢ | i ∈ I) ∈ H. If H is open in G_{(X,x₀)}(S,0), it follows that x₀ ∈ U; therefore there exists an i' such that x₀ ∈ Uᵢ. Consider in G_{(X,x₀)}(S,0) the net whose direct set is {(i₁, i₂, ..., iₙ) | i₁, i₂, ..., iₙ ∈ I} with the relation (i₁, i₂, ..., iₙ) ≻ (j₁, j₂, ..., jₙ) if Uᵢ₁ ∪ Uᵢ₂ ∪ ... ∪ Uᵢₙ ⊇ Uᵢ_j₁ ∪ Uᵢ_j₂ ∪ ... ∪ Uᵢ_jₙ and image of (i₁, i₂, ..., iₙ) equal to Uᵢ₁ ∪ Uᵢ₂ ∪ ... ∪ Uᵢₙ. This net, according to (∗), converges to U in G_{(X,x₀)}(S,0); as a consequence, since H is an open set which contains the limit of the net, there exists (i₁, i₂, ..., iₙ) such that Uᵢ₁ ∪ Uᵢ₂ ∪ ... ∪ Uᵢₙ ∈ H. When H is open in G_{(X,x₀)}(S,1), x₀ ∉ U and therefore, x₀ ∉ Uᵢ, for each i ∈ I. In this case, we can consider the net with the same direct set as above and with the image of (i₁, i₂, ..., iₙ) equal to Uᵢ₁ ∪ Uᵢ₂ ∪ ... ∪ Uᵢₙ. The same argument of the first case proves that there is (i₁, i₂, ..., iₙ) such that Uᵢ₁ ∪ Uᵢ₂ ∪ ... ∪ Uᵢₙ ∈ H.
Definition 5. A space X is quasi-locally compact if for every x in X and for every neighbourhood U of x there is a neighbourhood of $V \subseteq U$ of x such that every open cover of U has a finite subcover of V.

Theorem 6. Let X be a topological space. The following statements are equivalent:

(1) There exists x_0 in X such that the functor $(-) \cap (X,x_0): \text{Top}, \rightarrow \text{Top}$ has a right adjoint.

(2) X is cartesian in Top, that is X is quasi-locally compact.

(3) For any x_0 in X, the functor $(-) \cap (X,x_0): \text{Top}, \rightarrow \text{Top}$ has a right adjoint.

Proof. (1) \rightarrow (2) Since the continuity of the counit of the adjunction $c: \mathcal{G}(X,x_0)(S,0) \cap (X,x_0) \rightarrow (S,0)$ implies the continuity of the evaluation map $c': \mathcal{G}(X,x_0)(S,0) \times (X,x_0) \rightarrow (S,0)$, it follows that $(c')^{-1}(0)$ is an open set with $c'(W,x_0) = 0$, for any $W \in \mathcal{G}(X,x_0)(S,0)$.

Take a point $x \in X$ and fix U open in X with $x \in U$.

Suppose $x \in c(x_0)$; then $x_0 \in U$. Consequently U belongs to $\mathcal{G}(X,x_0)(S,0)$ and $c(U,x) = 0$. Since $(c')^{-1}(0)$ is open, there is an H, open in $\mathcal{G}(X,x_0)(S,0)$, with $U \in H$ and a neighbourhood V of x such that $(c')^{-1}(0) \supseteq H \times V$. Since $c'(W,y) = 0$ when $y \in W$, any element of H contains V. Now, consider an open cover of U, $\{U_i \mid i \in I\}$ and consider $U' = \bigcup\{U_i \mid i \in I\}$. Since $U' \supseteq U$, by Lemma 4a, $U' \in H$ and by Lemma 4b there are $t_1, t_2, \ldots, t_n \in I$ such that $U_{t_1} \cup U_{t_2} \cup \cdots \cup U_{t_n} \in H$ and this implies that $U_{t_1} \cup U_{t_2} \cup \cdots \cup U_{t_n} \supseteq V$.

Suppose now $x \notin c(x_0)$. Therefore, there is an open A of X, such that $x \in A$ and $x_0 \notin A$. The open set $U \cap A \in \mathcal{G}(X,x_0)(S,1)$; the map $c: \mathcal{G}(X,x_0)(S,1) \cap (X,x_0) \rightarrow (S,1)$ is continuous and $c(U \cap A,x) = 0$. Replacing $U' = \bigcup\{U_i \mid i \in I\}$ by $U' = \bigcup\{U_i \cap A \mid i \in I\}$ in the argument used before proves that there exists a neighbourhood V of x with $U \cap A \supseteq V$, such that any open cover of U (and then of $U \cap A$), admits a finite subcover for V.

(2) \rightarrow (3) Theorem 1.

(3) \rightarrow (1) Trivial.

Acknowledgment

The author wishes to thank the referee, for his helpful suggestion and for this patience.

References

Dipartimento di Matematica, Piazza di Porta San Donato, 5, 40127 Bologna, Italy
E-mail address: cagliari@dm.unibo.it