Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Subadjoint ideals and hyperplane sections


Authors: Nadia Chiarli and Silvio Greco
Journal: Proc. Amer. Math. Soc. 124 (1996), 1035-1041
MSC (1991): Primary 14C20, 13C13
DOI: https://doi.org/10.1090/S0002-9939-96-03126-7
MathSciNet review: 1301015
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the behaviour of the notion of ``sub-adjoint ideal to a projective variety" with respect to general hyperplane sections. As an application we show that the two classical definitions of sub-adjoint hypersurface given respectively by Enriques and Zariski are equivalent.


References [Enhancements On Off] (What's this?)

  • [AC] E. Arbarello and C. Ciliberto, Adjoint hypersurfaces to curves in 𝑃^{𝑟} following Petri, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 1–21. MR 686937
  • [AM] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
  • [BL] Piotr Blass and Joseph Lipman, Remarks on adjoints and arithmetic genera of algebraic varieties, Amer. J. Math. 101 (1979), no. 2, 331–336. MR 527995, https://doi.org/10.2307/2373981
  • [C] G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenenti ad una curva algebrica, Rend. Circ. Mat. Palermo 7 (1893), 89-110.
  • [C1] Nadia Chiarli, A sharp Castelnuovo bound for the normalization of certain projective surfaces, Algebraic geometry and its applications (West Lafayette, IN, 1990) Springer, New York, 1994, pp. 145–151. MR 1272026
  • [C2] ------, Sub-adjoint Ideals to Projective Varieties, Ricerche Mat. (to appear).
  • [CGM] Caterina Cumino, Silvio Greco, and Mirella Manaresi, An axiomatic approach to the second theorem of Bertini, J. Algebra 98 (1986), no. 1, 171–182. MR 825140, https://doi.org/10.1016/0021-8693(86)90020-7
  • [E] F. Enriques:, Introduzione alla geometria sopra le superficie algebriche, Mem. Soc. Ital. Sci. detta dei 40, III serie 10 (1896), 1-81.
  • [G] D. Gorenstein, An Arithmetic Theory of Plane Adjoint Curves, Trans. AMS 72 (1952), 414-436. MR 14:198h
  • [GV1] Silvio Greco and Paolo Valabrega, On the theory of adjoints, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, Springer, Berlin, 1979, pp. 98–123. MR 555694
  • [GV2] Silvio Greco and Paolo Valabrega, On the theory of adjoints. II, Rend. Circ. Mat. Palermo (2) 31 (1982), no. 1, 5–15 (English, with Italian summary). MR 664394, https://doi.org/10.1007/BF02849535
  • [J] Jean-Pierre Jouanolou, Théorèmes de Bertini et applications, Progress in Mathematics, vol. 42, Birkhäuser Boston, Inc., Boston, MA, 1983 (French). MR 725671
  • [M] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [S] E. Stagnaro, Canonical and pluricanonical adjoints I, II, III (Preprints 1991,1992), 1991,
    1992.
  • [Z1] Oscar Zariski, An introduction to the theory of algebraic surfaces, Notes by James Cohn, Harvard University, vol. 1957, Springer-Verlag, Berlin-New York, 1969. MR 0263819
  • [Z2] Oscar Zariski, Algebraic surfaces, Second supplemented edition, Springer-Verlag, New York-Heidelberg, 1971. With appendices by S. S. Abhyankar, J. Lipman, and D. Mumford; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 61. MR 0469915

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 14C20, 13C13

Retrieve articles in all journals with MSC (1991): 14C20, 13C13


Additional Information

Nadia Chiarli
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy
Email: CHIARLI@POLITO.IT

Silvio Greco
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24 - 10129 Torino, Italy
Email: SGRECO@POLITO.IT

DOI: https://doi.org/10.1090/S0002-9939-96-03126-7
Keywords: Sub-adjoint hypersurface, conductor, hyperplane section
Received by editor(s): April 25, 1994
Received by editor(s) in revised form: October 11, 1994
Additional Notes: Work partially supported by GNSAGA-CNR and MURST.
Dedicated: In memory of Mario Raimondo
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1996 American Mathematical Society