BEST BOUNDS FOR THE APPROXIMATE UNITS
FOR CERTAIN IDEALS OF $L^1(G)$ AND OF $A_p(G)$

JACQUES DELAPORTE AND ANTOINE DERIGHETTI

(Abstract. We compute the best bound for the approximate units of the augmentation ideal of the group algebra $L^1(G)$ of a locally compact amenable group G. More generally such a calculation is performed for the kernel of the canonical map from $L^1(G)$ onto $L^1(G/H)$, H being a closed amenable subgroup of G. Analogous results involving certain ideals of the Fourier algebra of an amenable group are also discussed.

1. Introduction

Let $T_{H,q}$ be the canonical map from $L^1(G)$ onto $L^1(G/H)$ where H is a closed subgroup of a locally compact group G. In 1968, Reiter [15] proved that if H is amenable the kernel of $T_{H,q}$ admits bounded approximate right units. He showed moreover that for $H = G$ this property characterizes the amenability of H. In 1978 the second author [3] obtained that this is also the case for a large class of subgroups of G (including all lattices in G). But at the present time a full converse is still in doubt.

In loco citato Reiter more precisely proved that the amenability of H implies the existence of approximate right units for $ker T_{H,q}$ bounded by 2. One of the main results of this work is that 2 is the best bound if H is infinite. For H finite the best bound is $\frac{2(|H|-1)}{|H|}$. We also investigate the corresponding results for the Fourier algebra $A(G)$ of a locally compact amenable group G. The best bound for approximate units of the ideal $I(H)$ of all $a \in A(G)$ vanishing on a closed normal subgroup H of G is 2 if G/H is infinite. It is $\frac{2(|G/H|-1)}{|G/H|}$ otherwise (for H open in G it is not necessary to assume the normality of H in G!)

In section 2 we essentially develop the tools which permit estimates from above and from below for the bounds of approximate units. In section 3 we obtain new bounds for ideals in $L^1(G)$ of the form $T_{H,q}^{-1}(I)$, and section 4 is devoted to the corresponding results in the Figá-Talamanca Herz algebra $A_p(G)$ (recall that $A_2(G) = A(G)$). Our main results (Theorems 5, 10 and 11) are contained in sections 5 and 6.

Received by the editors October 6, 1994.

1991 Mathematics Subject Classification. Primary 43A20, 43A07; Secondary 22D15, 43A22, 46J10.

Key words and phrases. Bounded approximate units, ideals, projections, amenable groups, Fourier algebra, Figá-Talamanca Herz algebra.

©1996 American Mathematical Society

1159
2. Bounded approximate units and projections

We collect in this rather technical section some results concerning an arbitrary normed algebra A. We will apply them later to $L^1(G)$ and $A_p(G)$.

The dual A^* of A carries a right A-module structure given by $(fa)(b) = f(ab)$ for $f \in A^*$ and $a, b \in A$. We denote by $\text{Hom}_A A^*$ the Banach algebra of all bounded linear operators T of A^* with $T(fa) = (Tf)a$ for $f \in A^*$ and $a \in A$. For $A = L^1(G)$, $\text{Hom}_A A^*$ is the algebra $\text{Hom}_{L^1(G)} L^\infty(G)$ of all bounded operators T of $L^\infty(G)$ with $T(f) = T\varphi$ for $f \in L^1(G)$, $\varphi \in L^\infty(G)$ (to $\varphi \in L^\infty(G)$, we associate $T\varphi$ the linear functional on $L^1(G)$ defined by $F_\varphi(f) = \int f(x)\varphi(x)dx$ for $f \in L^1(G)$; the above right $L^1(G)$-module structure on $L^1(G)^*$ is given by $F_\varphi g = F_\varphi*$ where $F(x) = \frac{g(x)}{g(x-1)}\Delta_G(x)$).

If $A = A_p(G)$, A^* is the space $PM_p(G)$ of all p-pseudomeasures on G and $\text{Hom}_A A^*$ is the Banach algebra $\text{Hom}_{A_p(G)} P\text{M}_p(G)$ of all bounded linear operators Φ of $P\text{M}_p(G)$ with $\Phi(uS) = u\Phi(S)$ for all $u \in A_p(G)$ and $S \in P\text{M}_p(G)$.

Proposition 1. Let I be a closed left ideal of A having approximate right units bounded by $C > 0$. Then there exists a projection $P \in \text{Hom}_A A^*$ from A^* onto I^1 with $\|\text{Id} - P\| \leq C$.

Proposition 2. Let $C \geq 0$. Assume that A admits two-sided approximate units bounded by C. Let I be a closed left ideal of A. Assume the existence of $P \in \text{Hom}_A A^*$ which is a projection from A^* onto I^1. Then for $u \in A$, $v \in I$, $f \in A^*$ and $\varepsilon > 0$ there is $w \in I$ with $\|w\| \leq C\|\text{Id} - P\|$, $\|v - wv\| < \varepsilon$ and $\|f(uw) - f(u) + (Pf)(u)\| < \varepsilon$.

Both propositions are essentially known. The commutative case is due to Lust-Piquard [13, pp. 7 and 15] and the general case to Forrest [7, Proposition 6.4, p. 17]. However the estimates of $\|\text{Id} - P\|$ (Prop. 1) and $\|w\|$ (Prop. 2) being probably new and a fortiori the condition involving f, u and P, we present a complete proof of Proposition 2.

If $C = 0$, then $A = \{0\}$. Suppose $C > 0$ and $\|\text{Id} - P\| = 0$. We have $I = \{0\}$; it suffices to choose $w = 0$. We therefore suppose $C > 0$ and $\|\text{Id} - P\| > 0$. Let F be a finite nonempty subset of I^* and $\eta > 0$. We denote by $E(F, \eta)$ the set of all $w \in I$ with $\|w\| \leq C\|\text{Id} - P\|$, $\|g(v) - g(wv)\| < \eta$ for every $g \in F$ and $\|f(uw) - f(u) + (Pf)(u)\| < \varepsilon$.

We first show that $E(F, \eta) \neq \emptyset$. There exists $u_1 \in A$ with $\|u_1\| \leq C$ and

\[
\|u - uu_1\| < \frac{\varepsilon}{2(1 + \|\text{Id} - P\|f)} \eta,
\]

\[
\|v - vu_1\| < \frac{\varepsilon}{4(1 + \max_{g \in F} \|P_g\|)(1 + \max_{g \in F} \|g\|)} \eta,
\]

\[
\|v - u_1v\| < \frac{\varepsilon}{4(1 + \max_{g \in F} \|P_g\|)} \eta.
\]

For $g \in I^*$, we set $\gamma(g) = g_1(u_1) - (P_g)(u_1)$ where $g_1 \in A^*$ is such that the restriction of g_1 to I is g. We have $\gamma \in I^{**}$ and $\|\gamma\| \leq C\|\text{Id} - P\|$. By the theorem of Goldstine, there is $w \in I$ with $\|w\| \leq C\|\gamma\|$, $\|f(u)(w) - \gamma(\text{Res}_I fu)| < \frac{\varepsilon}{4}$ and $\|g(u)(w) - \gamma(\text{Res}_I gw)| < \frac{\varepsilon}{4}$ for every $g \in F$. We obtain

\[
\|f(uw) - f(uu_1) + (Pf)(uu_1)\| < \frac{\varepsilon}{2}.
\]
and therefore \(|f(uw) - f(u) + (Pf)(u)| < \frac{\varepsilon}{2} + |(f - Pf)(uu_1 - u)| < \varepsilon.\)

For \(g \in G\), we have \(|g(vw) - g(vu_1) + (Pg)(vu_1)| < \frac{\varepsilon}{2}\). Taking into account that \(u_1 v \in I\) and \((Pg)(u_1 v) = 0\), we have

\[
|g(vw) - g(v)| \\
\leq |g(vw) - g(vu_1) + (Pg)(vu_1)| + |g(vu_1) - g(v)| + |Pg(u_1 v) - (Pg)(vu_1)| \\
\leq \frac{\eta}{4} + \|g\| \|vu_1 - v\| + \|Pg\| \|u_1 v - vu_1\| < \eta.
\]

This proves that \(w \in E(F, \eta)\).

Let \(B\) be the set \(\bigcup\{v E(F, \eta) \mid F \text{ nonempty finite subset of } A^* \text{ and } \eta > 0\}\). It is clear that \(v\) lies in the \(\sigma(A, A^*)\)-closure of \(B\) in \(A\). Therefore \(v\) lies in the norm closure in \(A\) of the convex hull of \(B\). Consequently we can find \(m \in \mathbb{N}, F_1, \ldots, F_m\) finite nonempty subsets of \(A^*, \eta_1, \ldots, \eta_m, c_1, \ldots, c_m > 0, w_1, \ldots, w_m \in I\) such that \(c_1 + \ldots + c_m = 1, w_j \in E(F_j, \eta_j)\) \((1 \leq j \leq m)\) and \(\|v - \sum_{j=1}^{m} c_j w_j\| < \varepsilon\).

Consider \(w = \sum_{j=1}^{m} c_j w_j\), indeed we obtain \(w \in I, \|w\| \leq C\|\text{Id} - P\| \|v - vw\| < \varepsilon\)
and \(|f(uw) - f(u) + (Pf)(u)| < \varepsilon.\)

We say that \(C \geq 0\) is a bound of approximate right units of \(A\) if for every \(\varepsilon > 0\) and every \(a \in A\) there is a \(b \in A\) with \(||a - ab|| < \varepsilon\) and \(||b|| \leq C\). Let \(C\) be the set of all bounds of approximate right units. Then the infimum \(D\) of \(C\) also is a bound of approximate right units. Let \(\varepsilon > 0\) and \(a \in A;\) there is \(C \in C\) with \(C < D + \varepsilon\) where \(0 < \eta \leq \frac{\varepsilon}{\sum \|a\|}\); there is also \(b \in A\) with \(||b|| \leq C\) and \(||a - ab|| < \eta\), we have \(||a - ab_1|| < \varepsilon\) and \(||b_1|| \leq D\) for \(b_1 = \frac{b}{\sum \|a\||}\). We call \(D\) the best bound for the approximate right units of \(A\).

Assume that \(A\) admits two-sided approximate units bounded by one. Let \(I\) be a closed left ideal of \(A\) having bounded approximate right units. Then the best bound for the approximate right units of \(I\) is \(\min\{||\text{Id} - P|| \mid P \in \text{Hom}_A A^*\}, P\) is a projection from \(A^*\) onto \(I^+\).

3. Bounds for approximate units of \(T_H^{-1}(I)\)

Let \(q\) be a continuous strictly positive function on \(G\) with

\[q(xh) = q(x)\Delta_H(h)\Delta_G(h^{-1}) \quad \text{for all } x \in G \text{ and } h \in H.\]

We choose measures \(dx, dh, d_q \hat{x}\) on \(G, H, G/H\) as in \([14, \text{p. } 158]\). For every \(f \in L^1(G)\), we define \(T_{H,q}f(\hat{x}) = \int_H \frac{f(xh)}{q(xh)}dh\) where \(\hat{x} = xH = \omega(x)\). When we can choose \(q = 1\) (this is the case if \(H\) is normal in \(G\)) we will write \(T_H\) instead of \(T_{H,1}\).

Theorem 3. Let \(H\) be a closed normal amenable subgroup of \(G\) and \(I\) a closed left ideal of \(L^1(G/H)\) having approximate right units bounded by \(C \geq 0\). Then \(T_{H}^{-1}(I)\) has approximate right units bounded by \(C + 2\).

The existence of bounded right units in \(T_{H}^{-1}(I)\) is due to Reiter \([16, \text{p. } 70]\). He found for \(T_{H}^{-1}(I)\) the bound \(3C + 5\) (see pp. 31-33). Later, Doran and Wichman \([6, \text{pp. } 43-44]\) obtained the bound \(3C + 2\) with the same method.
For $F \in C^h_{\text{sa}}(G)^*$ ($C^0_{\text{sa}}(G)$ is the Banach space of all bounded left uniformly continuous functions on G) the relation
\[\langle f, \tau_G(F) t \rangle_{L^1(G), L^\infty(G)} = \int_G f(x) \overline{\tau_G(F)(t)(x)} \, dx = F(f^* t) \]
for $f \in L^1(G)$ and $t \in L^\infty(G)$ defines an element $\tau_G(F)$ of $\text{Hom}_{L^1(G)} L^\infty(G)$. We recall that τ_G is a Banach algebra isomorphism from $C^0_{\text{sa}}(G)^*$ (with the Arens product) onto $\text{Hom}_{L^1(G)} L^\infty(G)$; for $\Phi \in \text{Hom}_{L^1(G)} L^\infty(G)$ and $t \in C^0_{\text{sa}}(G)$, we also have $\tau^{-1}_G(\Phi)(t) = \Phi(t)e$.

Let M be a left-invariant mean on $C^0_{\text{sa}}(H)$. For $\varphi \in C^0_{\text{sa}}(G)$ and $x \in G$, we put $\gamma(\varphi)(x) = M(\varphi \cdot H)$, where $\varphi \cdot H(h) = \varphi(\gamma x h)$ for $h \in H$. It is straightforward to verify that $\alpha = \gamma \circ \gamma^{-1}_G$ is a Banach algebra isometry from $\text{Hom}_{L^1(G/H)} L^\infty(G/H)$ into $\text{Hom}_{L^1(G)} L^\infty(G)$ (note the analogy with [1, Theorem 8, p. 50]). But in general $\alpha(Id_{L^\infty(G/H)}) \neq Id_{L^\infty(G)}$. According to Proposition 1 there is $P \in \text{Hom}_{L^1(G/H)} L^\infty(G/H)$, a projection from $L^\infty(G/H)$ onto I^\perp, with $\|Id_{L^\infty(G/H)} - P\| \leq C$. Let $t \in C^0_{\text{sa}}(G)$. For $f \in T_H^{-1}(I)$ we have
\[\langle f, \alpha(P)(t) \rangle_{L^1(G), L^\infty(G)} = (T_H f, P(\gamma(t)))_{L^1(G/H), L^\infty(G/H)} = 0 \]
and therefore $\alpha(P)(t) \in T_H^{-1}(I)^\perp$. From this we deduce $\alpha(P)(t) \in T_H^{-1}(I)^\perp$ for every $t \in L^\infty(G)$.

Let $t \in T_H^{-1}(I)^\perp$; for $f, g \in L^1(G)$ we have
\[\langle g \ast f, \alpha(P)(t) \rangle_{L^1(G), L^\infty(G)} = (T_H f, P(\gamma(g^* \ast t)))_{L^1(G/H), L^\infty(G/H)} . \]
There is $u \in I^\perp \cap C^0_{\text{sa}}(G/H)$ with $u \circ \omega = g^* \ast t$, and therefore
\[\langle g \ast f, \alpha(P)(t) \rangle_{L^1(G), L^\infty(G)} = (T_H f, Pu)_{L^1(G/H), L^\infty(G/H)} = (T_H f, u)_{L^1(G/H), L^\infty(G/H)} = (g \ast f, t)_{L^1(G), L^\infty(G)} , \]
so we obtain $\alpha(P)t = t$. We have proved that $\alpha(P)$ is a projection from $L^\infty(G)$ onto $T^{-1}_H(I)^\perp$. The inequality
\[\|Id_{L^\infty(G)} - \alpha(P)\| \leq \|Id_{L^\infty(G)} - \alpha(Id_{L^\infty(G/H)})\| + \|Id_{L^\infty(G/H)} - P\| \]
permits us to conclude.

It is possible to avoid Propositions 1, 2 and the use of $\text{Hom}_{L^1(G)} L^\infty(G)$. Nevertheless the following more direct proof gives perhaps less insight into the question.

Let $f \in T_H^{-1}(I)$ and $\varepsilon > 0$. There is $u \in L^1(G)$ with $\|f - f \ast u\|_1 < \frac{\varepsilon}{C + 5}$ and $\|u\|_1 = 1$. By assumption there is $r \in I$ with $\|T_H f - T_H f \ast r\|_1 < \frac{\varepsilon}{C + 5}$ and $\|r\|_1 \leq C$. Choose $s \in T_H^{-1}(I)$ with $T_H s = r$. Denote by A_H the convex hull of \{h | h \in H\} where $\langle A_h \varphi \rangle(x) = \varphi(xh)\Delta_G(h)$ for $\varphi \in C^0, x \in G$ and $h \in H$. Using the amenability of H we can find $A \in A_H$ with $\|A \|_1 < \|r\|_1 + \eta$ where $\eta = \frac{\varepsilon}{(C + 5)(1 + \|f\|_1)}$ (see [14, p. 174]). There is also $B \in A_H$ with
\[\|B(f \ast u - f \ast u \ast As)\|_1 < \frac{\varepsilon}{C + 5} + \|T_H (f \ast u - f \ast u \ast As)\|_1 . \]
We have $u - Bu + u * BAs \in T_H^{-1}(I)$, $||f - f * (u - Bu + u * BAs)||_1 < \frac{\varepsilon (C + 4)}{C + 5}$ and $||u - Bu + u * BAs||_1 < 2 + C + \eta$. It suffices now to put

$$k = \frac{C + 2}{C + 2 + \eta} (u - Bu + u * BAs)$$

to conclude $||k||_1 \leq C + 2$ and $||f - f * k||_1 < \varepsilon$.

4. Analogous result for the Figà-Talamanca Herz algebra $A_p(G)$

Theorem 4. Let G be an amenable locally compact group, H a closed normal subgroup of G and I a closed ideal of $A_p(H)$. We assume that I has approximate units bounded by C ($C \geq 0$). Then the closed ideal $\{u \in A_p(G) \mid \text{Res}_H u \in I\}$ has approximate units bounded by $C + 2$.

For $p = 2$, the special case $I = \{0\}$, with the bound 3, was already obtained by Forrest [7, p. 6, Proposition 3.7]. More recently, Forrest [8, Proposition 3.4] treated also the corresponding result in $A_p(G)$ with a less explicit and certainly less precise constant.

Instead of using $C_{0u}^p(G)$, we consider $cv_p(G)$, the norm closure in the space $L(L^p(G))$ of all bounded operators of all p-convolution operators with compact support. Let P be the map from $L(L^p(G))$ into $L(L^p(H))$ constructed in Theorem 3 of [2]. Let also σ_G be the canonical Banach algebra isometry from $cv_p(G)$ onto $\text{Hom}_{A_p(G)}(PM_p(H))$ (see for example [1, p. 501]). The map $\lambda = \sigma_G \circ P^* \circ \sigma_H^{-1}$ is a Banach algebra isometry from $\text{Hom}_{A_p(H)}(PM_p(H))$ into $\text{Hom}_{A_p(G)}(PM_p(G))$. In analogy with the L^1-case, we have in general $\lambda(Id_{PM_p(H)}) \neq Id_{PM_p(G)}$.

Let i be the canonical map from $PM_p(H)$ into $PM_p(G)$ defined in [4, p. 76]. Then $i(I^\perp)$ coincides with J^\perp where $J = \{u \in A_p(G) \mid \text{Res}_H u \in I\}$. To verify this, consider $T \in J^\perp$, the support of T lies in H. According to [12, p. 190, Théorème 5], there is $S \in PM_p(H)$ such that $i(S) = T$. We obtain $S \in I^\perp$.

Conversely assume that $T = i(S)$ with $S \in I^\perp$. For $v \in J$ we have $(v, T)_{A_p(G),PM_p(G)} = (\text{Res}_H v, S)_{A_p(H),PM_p(H)} = 0$ and thus $T \in J^\perp$.

For $\Phi \in \text{Hom}_{A_p(H)}(PM_p(H))$ we have $\lambda(\Phi) = i \circ \Phi \circ P$. Take indeed $u \in A_p(G)$ and $T \in PM_p(G)$; then

$$\langle u, \lambda(\Phi)T \rangle_{A_p(G),PM_p(G)} = \langle P^*(\sigma_H^{-1}(\Phi))(uT), \sigma_H^{-1}(\Phi)(\text{Res}_H u, P(T)) \rangle_{A_p(H),PM_p(H)} = \langle (\text{Res}_H u, \Phi(P(T)))_{A_p(H),PM_p(H)} \rangle_{A_p(G),PM_p(G)}.$$

There exists $P \in \text{Hom}_{A_p(H)}(PM_p(H))$, a projection from $PM_p(H)$ onto I^\perp, with $||\text{Id}_{PM_p(H)} - P|| \leq C$. The map $\lambda(P)$ is a projection from $PM_p(G)$ onto J^\perp. Let $T \in PM_p(G)$. For $w \in J$,

$$\langle w, \lambda(P)(T) \rangle_{A_p(G),PM_p(G)} = \langle (\text{Res}_H w, P(P(T)))_{A_p(H),PM_p(H)} \rangle_{A_p(G),PM_p(G)} = 0.$$

Therefore $\lambda(P)(T) \in J^\perp$. Let $T \in J^\perp$. There is $S \in I^\perp$ with $T = i(S)$. For
Let \(w \in A_p(G) \) we have

\[
\langle w, \lambda(P)(T) \rangle_{A_p(G), PM_p(G)} = (\text{Res}_H w, P(P(i(S))))_{A_p(H), PM_p(H)}
\]

\[
= (\text{Res}_H w, P(S))_{A_p(H), PM_p(H)}
\]

\[
= (\text{Res}_H w, S)_{A_p(H), PM_p(H)}
\]

\[
= \langle w, i(S) \rangle_{A_p(G), PM_p(G)}.
\]

Finally, the inequality \(|| \text{Id}_{PM_p(G)} - \lambda(P)|| \leq 2 + C \) permits us as above to conclude.

It is also possible to write another more direct proof:

Let \(u \in J \) and \(\varepsilon > 0 \). There is \(v \in A_p(G) \) with \(||v||_{A_p(G)} = 1 \) and \(||u - uv||_{A_p(G)} < \frac{\varepsilon}{4} \). By assumption, there exists \(w \in I \) with \(||\text{Res}_H (uv) - w \text{Res}_H (uv)||_{A_p(H)} < \frac{\varepsilon}{4} \) and \(||w||_{A_p(H)} \leq C \). Using [9, p. 92, Theorem 1b] there is \(a \in A_p(G) \) with \(\text{Res}_H a = w \) and \(||u||_{A_p(G)} < ||w||_{A_p(H)} + \eta \) where \(0 < \eta < \min\{1, \frac{C}{4(1 + ||w||_{A_p(H)})}\} \).

By [5, p. 102, Proposition 10] there is \(b \in A_p(G/H) \) with \(b(\ell) = 1 \), \(||b||_{A_p(G/H)} < 1 + \eta \) and \(||b \circ \omega (uv - uv)|_{A_p(G)} < \frac{\varepsilon}{4} + ||\text{Res}_H (uv - uv)|_{A_p(H)} \). Let \(d = v - b \circ \omega v + b \circ \omega va \). We have \(d \in J \); from

\[
||u - ud||_{A_p(G)} \leq ||u - uv||_{A_p(G)} + ||b \circ \omega (uv - uv)|_{A_p(G)},
\]

we deduce \(||u - ud||_{A_p(G)} < \frac{3\varepsilon}{4} \). Moreover we have \(||d||_{A_p(G)} < C + 2 + 2\eta + \eta C + \eta^2 \).

Consider \(f = \frac{C + 2 + 2\eta + \eta C + \eta^2}{C + 2 + 2\eta + \eta C + \eta^2} \). We have \(f \in J \) and \(||f||_{A_p(G)} \leq C + 2 \). From

\[
||u - uf||_{A_p(G)} \leq ||u - ud||_{A_p(G)} + ||ud - uf||_{A_p(G)}
\]

and

\[
||ud - uf||_{A_p(G)} \leq (2\eta + \eta C + \eta^2)||u||_{A_p(G)}
\]

we obtain \(||ud - uf||_{A_p(G)} < \frac{\varepsilon}{4} \) and finally \(||u - uf||_{A_p(G)} < \varepsilon \).

5. **Best bound for the approximate units of the ideal \(\ker T_{H,q} \)**

Theorem 5. Let \(H \) be a closed amenable subgroup of \(G \). The best bound for the right approximate units of \(\ker T_{H,q} \) is \(2 \) if \(H \) is infinite. It is \(\frac{2(|H| - 1)}{|H|} \) otherwise.

This theorem is a consequence of the following two propositions.

Proposition 6. Let \(P \in \text{Hom}_{L^1(G)} L^\infty(G) \) which is a projection from \(L^\infty(G) \) onto \(\ker T_{H,q} \), \(H \) being a closed noncompact subgroup of \(G \). Then we have

1) \(P(f) = 0 \) for all \(f \in C_0(G) \) (the set of all continuous functions on \(G \) vanishing at infinity).

2) \(||\text{Id} - P|| \geq 2 \).

The existence of \(P \) is, for \(H \) amenable, a consequence of Proposition 1.

To prove 1), observe first that \(P(t) \in C^0_{b,a}(G) \) for \(t \in C^0_{b,a}(G) \). For every \(r \in C^0_{b,a}(G) \) (i.e. \(r \) is a continuous function with compact support on \(G \), \(t \in C^0_{b,a}(G) \), \(h \in H \), we have \(\langle r - r_{h^{-1}} \Delta_G (h^{-1}), P(t) \rangle_{L^1(G), L^\infty(G)} = 0 \) for \(a, x \in G, \varphi \in C^0 \),
We therefore conclude that $P(h) = P(t)$ and consequently $P(h_t(c)) = P(t)(c)$. Now let $f \in C_0(G)$. There is a sequence $(h_n)_{n=1}^\infty \subseteq H$ such that $\supp h_n \cap \supp h_m = \emptyset$ for $n \neq m$. For $N \in \mathbb{N}$ we have

$$|P\left(\sum_{k=1}^N h_k f\right)(e)| = |N(Pf)(e)| \leq ||P|| ||f||_\infty ,$$

which implies $P(f)(e) = 0$. Consequently, for every $x \in G$, $P(x f)(e) = 0$ and therefore $P(f) = 0$.

To prove 2), it suffices to choose $f \in C_0(G)$ with $0 \leq f \leq 1_G$ and $f(e) = 1$. The function $g = 2f - 1_G$ satisfies the following properties: $g \in C^0_t(G), ||g||_\infty = 1$ and $(\Id - P)g = 2f$. We finally obtain $||\Id - P|| \geq 2$.

Proposition 7. Let H be a compact subgroup of G and $P \in \text{Hom}_{L^1(G)}L^\infty(G)$ a projection from $L^\infty(G)$ onto $\ker T_H^\perp$. If H is infinite, then $||\Id - P|| \geq 2$ and $||\Id - P|| \geq \frac{2(2[H] - 1)}{|H|}$ otherwise.

Preliminary remark. If H is a finite, $P(t) = \frac{1}{|H|} \sum_{h \in H} t_h$ (for $t \in L^\infty(G)$) defines $P \in \text{Hom}_{L^1(G)}L^\infty(G)$, which is a projection from $L^\infty(G)$ onto $\ker T_H^\perp$. We have $||\Id - P|| \leq \frac{2(2[H] - 1)}{|H|}$.

Proof. 1) We have $(Pf)(e) = \int_H f(h) dh$ for all $f \in C_0(G)$ such that $h f = f_h$ for every $h \in H$.

Using the continuity of the map $h \mapsto f_h$ from H into $C_0(G)$, we obtain the existence and the unicity of $g \in C_0(G)$ such that $L(g) = \int_H L(f_h) dh$ for every $L \in C_0(G)^\ast$. It follows that $g(x) = \int_H f(xh) dh$ for every $x \in G$ and consequently $P(g) = g$. We also have

$$P(g)(e) = \int_H P(f_h)(e) dh = \int_H P(h_f)(e) dh = \int_H (Pf)(h) dh = \int_H Pf(e) dh .$$

We therefore conclude that $g(e) = (Pf)(e)$.

2) Assume that H is infinite. Let $\varepsilon > 0$. There is an open neighbourhood U of e in G such that $m_H(H \cap U) < \frac{\varepsilon}{2}$ where m_H is the normalized Haar measure of H. There is also a compact neighbourhood V of e in G with $V = V^{-1}, V^2 \subseteq U$ and $h V = V h$ for every $h \in H$. Consider then $\varphi = \frac{1_V * 1_V}{m_G(V)}$. We have $h \varphi = \varphi_h$ for every $h \in H, 2\varphi - 1_G \in C^0_t(G), (2\varphi - 1_G)(e) = 1, ||2\varphi - 1_G||_\infty = 1$ and $(\Id - P)(2\varphi - 1_G)(e) = 2 - 2P(\varphi)(e)$. From

$$P(\varphi)(e) = \int_H \varphi(h) dh \leq m_H(U \cap H) < \frac{\varepsilon}{2} ,$$

we deduce $||\Id - P|| > 2 - \varepsilon$.
3) In the finite case it suffices to consider an open neighbourhood U of e in G with $U \cap H = \{e\}$. We choose then V and φ as in 2). We obtain

$$ (\text{Id} - P)(2\varphi - 1_G)(e) = 2 - 2\varphi(e) = 2 - \frac{2}{|H|} \sum_{h \in H} \varphi(h) = 2 - \frac{2}{|H|} $$

and therefore $|\text{Id} - P| \geq \frac{2(|H| - 1)}{|H|}$.

It would be interesting (for H amenable) to obtain a description of the set of all projections P from $L^\infty(G)$ onto $\ker T_H^\perp$ with $P \in \text{Hom}_{L^1(G)} L^\infty(G)$. For H compact and normal in G we can show that this set consists of a unique element given by $P(t)(x) = \int_H t(xh)dh$ for $t \in C_0^b(G)$.

Let $f \in L^1(G)$, $t \in L^\infty(G)$ and $\varepsilon > 0$. By Proposition 2 there is $g \in \ker T_H$ with $|g|_1 \leq |\text{Id} - P|_1$. \(|f - T_H f \circ \omega - (f - T_H f \circ \omega) \ast g| < \frac{\varepsilon}{2(1 + ||t||_\infty)}$$ and$$ |\langle f, P(t) \rangle_{L^1(G), L^\infty(G)} - \langle f, t \rangle_{L^1(G), L^\infty(G)} + \langle f \ast g, t \rangle_{L^1(G), L^\infty(G)}| < \frac{\varepsilon}{2}.$$

The subgroup H being normal in G, for every $x \in G$ we have

$$ (T_H f \circ \omega) \ast g(x) = \int_{G/H} (T_H f)(\omega(x)g^{-1}) \Delta_G(g^{-1}) \left(\int_H g(yh)dh \right) dy $$

and therefore $(T_H f \circ \omega) \ast g = 0$. Taking into account that

$$ |\langle f, P(t) \rangle_{L^1(G), L^\infty(G)} - \langle T_H f \circ \omega, t \rangle_{L^1(G), L^\infty(G)}|$$

$$ \leq |\langle f, P(t) \rangle_{L^1(G), L^\infty(G)} - (f, t)_{L^1(G), L^\infty(G)} + (f \ast g, t)_{L^1(G), L^\infty(G)}|$$

$$ + |\langle f - T_H f \circ \omega - (f - T_H f \circ \omega) \ast g, t \rangle_{L^1(G), L^\infty(G)}|$$

we obtain that $|\langle f, P(t) \rangle_{L^1(G), L^\infty(G)} - \langle T_H f \circ \omega, t \rangle_{L^1(G), L^\infty(G)}| < \varepsilon$. In other words $\langle f, P(t) \rangle_{L^1(G), L^\infty(G)} = \langle T_H f \circ \omega, t \rangle_{L^1(G), L^\infty(G)}$. This implies for $t \in C_0^b(G)$ and $x \in G$ that $P(t)(x) = \int_H t(xh)dh$.

6. Best bound for the approximate units of certain ideals of the Fourier algebra

For an arbitrary subset F of G we denote by $I(F)$ the closed ideal of $A_p(G)$ consisting of those functions vanishing on F. Motivated by the assertion 1) of Proposition 6 we first prove the following result.

Proposition 8. Let G be amenable and let H be a closed normal nonopen subgroup of G. Let $P \in \text{Hom}_{A_p(G)} \text{PM}_p(G)$ be a projection from $\text{PM}_p(G)$ onto $I(H)^\perp$. Then $P(T) = 0$ for every $T \in \text{PF}_p(G)$.

$\text{PF}_p(G)$ is the norm closure of $L^1(G)$ in $\text{PM}_p(G)$. For G abelian $\text{PF}_2(G)$ is, via the Fourier transform, isomorphic to $C_0(G)$. To P there corresponds $P \in \text{Hom}_{L^1(G)} L^\infty(G)$, a projection from $L^\infty(G)$ onto $\ker T_H^\perp$ where H^\perp is the set of all continuous characters of G equal to 1 on H. Moreover H is nonopen if and only if H^\perp is noncompact.
The existence of P (in Proposition 8) is a consequence of Proposition 1 and Theorem 4.

Let $f \in C_00(G)$, $K = \text{supp } f^*$, $u \in A_p(G)$, $\varepsilon > 0$ and U be an open neighbourhood of $H \cap K$ in G such that

$$m_G(U) < \frac{\varepsilon}{4(||f^*||_\infty + 1)(||u||_{A_p(G)} + 1)||1|| + 1).$$

It is possible to choose $v \in I(H) \cap C_00(G)$ with $v = 1$ on $K_1 = K - U$. By Proposition 2 there is $w \in I(H)$ with $||w||_{A_p(G)} \leq ||1 - P||$,

$$||uw - v||_{A_p(G)} < \frac{\varepsilon}{4(||f||_1 + 1)(||u||_{A_p(G)} + 1)},$$

and

$$\langle uw, \lambda_G^p(f) \rangle_{A_p(G), PM_p(G)} - \langle u, \lambda_G^p(f) \rangle_{A_p(G), PM_p(G)} + \langle u, P(\lambda_G^p(f)) \rangle_{A_p(G), PM_p(G)} < \frac{\varepsilon}{2}$$

(for a bounded measure μ, $\lambda_G^p(\mu)$ is the convolution operator defined by $\lambda_G^p(\mu)(\varphi)(x) = \int_G \varphi(xy) \Delta_G(y)^{1/p} d\mu(y)$). We obtain the estimate

$$||u, P(\lambda_G^p(f)) \rangle_{A_p(G), PM_p(G)} < \frac{\varepsilon}{2} + ||uw, \lambda_G^p(f) \rangle_{A_p(G), PM_p(G)}.$$

Taking into account that

$$\langle u - uw, \lambda_G^p(f) \rangle_{A_p(G), PM_p(G)} = \int_G (u(x) - u(x)w(x)) f^*(x) dx,$$

we can write

$$||u - uw, \lambda_G^p(f) \rangle_{A_p(G), PM_p(G)}$$

$$\leq \int_{K_1} |u(x)v(x) - v(x)u(x)w(x)||f^*(x)|| dx$$

$$+ \int_{K \cap U} |u(x) - u(x)w(x)||f^*(x)|| dx.$$

We estimate

$$\int_{K_1} |u(x)v(x) - v(x)u(x)w(x)||f^*(x)|| dx$$

by $||u||_{A_p(G)} ||v - uv||_{A_p(G)} ||f^*||_t$ and

$$\int_{K \cap U} |u(x) - u(x)w(x)||f^*(x)|| dx$$

by $m_G(K \cap U)(||u||_\infty + ||u||_\infty ||w||_\infty ||f^*||_\infty$.

We obtain therefore that $||u - uw, \lambda_G^p(f) \rangle_{A_p(G), PM_p(G)} < \frac{\varepsilon}{2}$ and finally

$$||\langle u, P(\lambda_G^p(f)) \rangle_{A_p(G), PM_p(G)} < \varepsilon.$$

We also need an analog of the assertion 2) of Proposition 6:
Proposition 9. There is $T \in PF_2(G)$ with $|||T|||_2 = 1$ and $|||\text{Id}_{L^2(G)} - 2T|||_2 = 1$.

Let $f \in C_0(G)$ such that $f \neq 0$ and $f = f^*$. Consider the C^*-algebra $\lambda^2_G(M^1(G))$ and denote by A and B the C^*-subalgebras generated by $\lambda^2_G(f)$, respectively $\lambda^2_G(f)$ and $\text{Id}_{L^2(G)}$. Of course A and B are abelian and B is unital. Let $\Omega(A) \subset \Omega(B)$ be the spectra of A and B. The space $\Omega(A)$ is locally compact (and nonempty). $\Omega(B)$ is compact (it is actually the one-point compactification of $\Omega(A)$). It follows that the Gelfand transformation $\mathcal{F} : B \longrightarrow C_0(\Omega(B)) = C(\Omega(B))$ is an isometric isomorphism. Moreover the restriction of \mathcal{F} to A is an isomorphism onto $C_0(\Omega(A))$. Choose now $\varphi \in C(\Omega(B))$ such that $0 \leq \varphi \leq 1$, $||\varphi||_\infty = 1$ and supp $\varphi \subset \Omega(A)$. Let $T = \mathcal{F}^{-1}(\varphi) \in A \subset PF_2(G)$ and $|||T|||_2 = ||\varphi||_\infty = 1 = |||\text{Id} - 2T|||_2$.

Theorem 10. Suppose that G is amenable, and let H be a closed normal nonopen subgroup of G. The best bound for approximate units of $I(H)$ (in $A_2(G)$) is 2.

Let $P \in \text{Hom}_{A(G)} PM(G)$ be a projection from $PM(G)$ onto $I(H)^\perp$. There is $T \in PF(G)$ with $|||T|||_2 = 1$ and $|||\text{Id}_{L^2(G)} - T|||_2 = 1$. We have

$$(\text{Id} - P)(\text{Id}_{L^2(G)} - T) = -2T.$$

This implies $||\text{Id} - P|| \geq 2$.

Remark. We are unable to prove the corresponding result in $A_p(G)$ for $p \neq 2$!

Theorem 11. Let H be an open (not necessarily normal) subgroup of an amenable group G. The best bound for approximate units of $I(H)$ (in $A_2(G)$) is 2 if G/H is infinite, and is $\frac{2[G/H] - 1}{|G/H|}$ otherwise.

Let $MA(G)$ be the Banach algebra of all pointwise multipliers of $A(G)$ with the multiplier norm. We have $1_H \in MA(G)$. Clearly $P_0(T) = 1_RT$ defines a map which belongs to $\text{Hom}_{A(G)} PM(G)$ and projects $PM(G)$ onto $I(H)^\perp$. From the decomposition $T = 1_RT + 1_{G\setminus H}T$ it follows that any $P \in \text{Hom}_{A(G)} PM(G)$ which projects $PM(G)$ onto $I(H)^\perp$ coincides with P_0. Therefore the best bound for the approximate units of $I(H)$ is precisely $||\text{Id} - P_0||$, i.e. $||1_{G\setminus H}||_{MA(G)}$.

Now G being amenable $MA(G)$ coincides (isometrically) with the intricate Banach algebra $B_2(G)$ introduced by C. Herz [10]. We recall the necessary notions. Let X be a nonempty set (with the discrete topology). Every $k \in C_00(X \times X)$ is the kernel of a bounded operator of $C(X)$. The corresponding norm is denoted $|||k|||_2$. $V_2(X)$ is the space of all $\varphi \in C^{X \times X}$ for which there is $C > 0$ with $|||\varphi k|||_2 \leq C|||k|||_2$ for every $k \in C_00(X \times X)$. The smallest possible C is $||\varphi||_{V_2(X)}$. By definition $B_2(G)$ is the set of all $\varphi \in C(G)$ for which $M_G \varphi \in V_2(G_d)$ where $M_G \varphi(x,y) = \varphi(y^{-1}x)$ and $|||\varphi|||_{B_2(G)} = |||M_G \varphi|||_{V_2(G_d)}$.

Moreover, by an important result of C. Herz [11, Theorem 5],

$$|||1_{G\setminus H}|||_{B_2(G)} = |||1_{G/H \times G/H \setminus \Delta(G/H)}|||_{V_2(G/H_d)}$$

where $\Delta(G/H)$ is the diagonal in $G/H \times G/H$. Now G/H carries a structure of abelian group. Let L_d be this group with the discrete topology. We have $|||1_{G\setminus H}|||_{B_2(G)} = |||1_{L_d\setminus \{e\}}|||_{B_2(L_d)}$. From above $|||1_{L_d\setminus \{e\}}|||_{B_2(L_d)}$ is the best bound for approximate units of $ker T_{L_d}^\perp$. We conclude then with the help of Theorem 5.
BEST BOUNDS FOR APPROXIMATE UNITS

REFERENCES

5. ______, Quelques observations concernant les ensembles de Ditkin d'un groupe localement compact, Mh. Math. 101 (1986), 95–113. MR 88c:43006
13. F. Lust-Piquard, Propriétés harmoniques et géométriques des sous-espaces invariants par translation de $L^\infty(G)$, Thèse, Université de Paris-Sud, 1978. MR 58:23346

Institut de Mathématiques, Faculté des Sciences, Université de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland

E-mail address: antoine.derighetti@ima.unil.ch