Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The nilpotence height of $P_t^s$


Author: Kenneth G. Monks
Journal: Proc. Amer. Math. Soc. 124 (1996), 1297-1303
MSC (1991): Primary 55S10, 55S05; Secondary 57T05
DOI: https://doi.org/10.1090/S0002-9939-96-03150-4
MathSciNet review: 1301039
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The method of Walker and Wood is used to completely determine the nilpotence height of the elements $\mbox{$P_t^s$}$ in the Steenrod algebra at the prime 2. In particular, it is shown that $(\mbox{$P_t^s$})^{2\lfloor s/t \rfloor+2}=0$ for all $s\ge 0$, $t\ge 1$. In addition, several interesting relations in $A$ are developed in order to carry out the proof.


References [Enhancements On Off] (What's this?)

  • [AD] D. W. Anderson and D. M. Davis, A vanishing theorem in homological algebra, Comment. Math. Helv. 48 (1973), 318-327. MR 48:12526
  • [Ar] D. Arnon, Monomial bases in the Steenrod algebra, preprint, MIT, 1993.
  • [D] D. M. Davis, The antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235-236. MR 48:7276
  • [G] A. M. Gallant, Excess and conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 76 (1979), 161-166. MR 81a:55029
  • [Gra] B. Gray, Homotopy theory, Academic Press, New York, 1975. MR 53:6528
  • [K] L. Kristensen, On a Cartan formula for secondary cohomology operations, Math. Scand. 16 (1965), 97-115. MR 33:4926
  • [L] E. Lucas, Théorie des functions numériques simplement periodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
  • [Mil] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171. MR 20:6092
  • [M1] K. G. Monks, Nilpotence in the Steenrod algebra, Bol. Soc. Mat. Mexicana (2) 37 (1992), 401--416. MR 95j:55032
  • [M2] ------, Polynomial modules over the Steenrod algebra and conjugation in the Milnor basis, Proc. Amer. Math. Soc. 122 (1994), 625--634. MR 95a:55042
  • [S1] J. H. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), 657--661. MR 93k:55020
  • [S2] ------, Hit polynomials and the canonical antiautomorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 123 (1995), 627--637. MR 95c:55023
  • [St] P. D. Straffin, Jr., Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253--255. MR 52:1693
  • [WW] G. Walker and R. M. W. Wood, The nilpotence height of $Sq^{2^n}$, Proc. Amer. Math. Soc. 124 (1996),1291--1295.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55S10, 55S05, 57T05

Retrieve articles in all journals with MSC (1991): 55S10, 55S05, 57T05


Additional Information

Kenneth G. Monks
Affiliation: Department of Mathematics University of Scranton Scranton, Pennsylvania 18510
Email: monks@uofs.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03150-4
Received by editor(s): June 28, 1994
Communicated by: Thomas Goodwillie
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society