Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Representation of continuous functions
as sums of Green functions


Author: Stephen J. Gardiner
Journal: Proc. Amer. Math. Soc. 124 (1996), 1149-1157
MSC (1991): Primary 31B05
DOI: https://doi.org/10.1090/S0002-9939-96-03176-0
MathSciNet review: 1307519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K\subset \Omega\subseteq \mathbb{R}^n$, where $K$ is polar and compact and $\Omega$ is a domain with Green function $G_\Omega({\boldsymbol\cdot},{\boldsymbol\cdot} )$. We characterize those subsets $E$ of $\Omega\backslash K$ which have the following property: Every positive continuous function on $K$ can be written as $\sum_k\lambda_kG_\Omega(x_k, {\boldsymbol\cdot})$, where $x_k\in E$ and $\lambda_k>0$ for each $k$.


References [Enhancements On Off] (What's this?)

  • 1. H. Aikawa, Quasiadditivity of Riesz capacity Math. Scand. 69 (1991), 15--30. MR 93d:31007
  • 2. ------, Sets of determination for harmonic functions in an NTA domain preprint.
  • 3. F. F. Bonsall and D. Walsh, Vanishing $l^1$-sums of the Poisson kernel, and sums with positive coefficients, Proc. Edinburgh Math. Soc. 32 (1989), 431--447. MR 90m:31001
  • 4. M. Brelot, Sur l'approximation et la convergence dans la théorie des fonctions harmoniques ou holomorphes, Bull. Soc. Math. France 73 (1945), 55--70. MR 7:205a
  • 5. J. Deny, Sur l'approximation des fonctions harmoniques, Bull. Soc. Math. France 73 (1945), 71--73. MR 7:205b
  • 6. J. L. Doob, Classical potential theory and its probabilistic counterpart, Springer, Berlin, 1984. MR 85k:31001
  • 7. N. F. Dudley Ward, On a decomposition theorem for continuous functions of Hayman and Lyons, New Zealand J. Math. 22 (1993), 49--59.
  • 8. M. Essén, On minimal thinness, reduced functions and Green potentials, Proc. Edinburgh Math. Soc. 36 (1992), 87--106. MR 94c:31003
  • 9. S. J. Gardiner, Sets of determination for harmonic functions, Trans. Amer. Math. Soc. 338 (1993), 233--243. MR 93j:31005
  • 10. W. K. Hayman, Atomic decompositions, Recent Advances in Fourier Analysis and its Applications (J. S. Byrnes and J. L. Byrnes, eds.), Kluwer, Dordrecht, 1993, pp. 597--611.
  • 11. W. K. Hayman and T. J. Lyons, Bases for positive continuous functions, J. London Math. Soc. (2) 42 (1990), 292--308. MR 92a:31002
  • 12. M. V. Keldy\v{s}, On the solvability and stability of the Dirichlet problem, Uspekhi Mat. Nauk 8 (1941), 171--231; English transl., Amer. Math. Soc. Transl. 51 (1966), 1--73.
  • 13. N. S. Landkof, Foundations of modern potential theory, Springer, Berlin, 1972. MR 50:2520
  • 14. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 44:7280
  • 15. H. Wallin, Continuous functions and potential theory, Ark. Mat. 5 (1963), 55--84. MR 29:2425

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 31B05

Retrieve articles in all journals with MSC (1991): 31B05


Additional Information

Stephen J. Gardiner
Affiliation: Department of Mathematics, University College, Dublin 4, Ireland
Email: gardiner@irlearn.ucd.ie

DOI: https://doi.org/10.1090/S0002-9939-96-03176-0
Received by editor(s): June 14, 1994
Received by editor(s) in revised form: October 4, 1994
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society