Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A decomposition theorem
for planar harmonic mappings


Authors: Peter Duren and Walter Hengartner
Journal: Proc. Amer. Math. Soc. 124 (1996), 1191-1195
MSC (1991): Primary 30C99; Secondary 31A05, 30C65
DOI: https://doi.org/10.1090/S0002-9939-96-03319-9
MathSciNet review: 1327008
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition is found for a complex-valued harmonic function to be decomposable as an analytic function followed by a univalent harmonic mapping.


References [Enhancements On Off] (What's this?)

  • 1. W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. 33 (1986), 473--483.MR 87j:30037
  • 2. O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, Berlin, Heidelberg, and New York, 1973.MR 49:9202
  • 3. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689--692.
  • 4. A. Lyzzaik, Local properties of light harmonic mappings, Canad. J. Math. 44 (1992), 135--153.MR 93e:30048

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30C99, 31A05, 30C65

Retrieve articles in all journals with MSC (1991): 30C99, 31A05, 30C65


Additional Information

Peter Duren
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: duren@umich.edu

Walter Hengartner
Affiliation: Département de Mathématiques, Université Laval, Québec, P.Q., Canada G1K 7P4
Email: walheng@mat.ulaval.ca

DOI: https://doi.org/10.1090/S0002-9939-96-03319-9
Keywords: Harmonic functions, harmonic mappings, analytic functions, complex dilatation, quasiconformal mappings, Beltrami equation, compositions
Received by editor(s): October 10, 1994
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society