Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Endomorphism rings of simple modules
over group rings


Author: Robert L. Snider
Journal: Proc. Amer. Math. Soc. 124 (1996), 1043-1049
MSC (1991): Primary 16S34, 20C05; Secondary 16K20, 16S50
DOI: https://doi.org/10.1090/S0002-9939-96-03368-0
MathSciNet review: 1327044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $N$ is a finitely generated nilpotent group which is not abelian-by-finite, $k$ a field, and $D$ a finite dimensional separable division algebra over $k$, then there exists a simple module $M$ for the group ring $k[G]$ with endomorphism ring $D$. An example is given to show that this cannot be extended to polycyclic groups.


References [Enhancements On Off] (What's this?)

  • 1. P. Draxl, Skew fields, Cambridge University Press, Cambridge 1983. MR 85a:16022
  • 2. V.A. Jategaonkar, A multiplicative analog of the Weyl algebra, Comm. Algebra 12 (1984), 1669-1688. MR 85k:16013
  • 3. D.L. Harper,Primitive irreducible representations of nilpotent groups, Math. Proc. Camb. Phil. Soc. 82 (1977), 241-247. MR 56:5698
  • 4. D.L. Harper,Primitivity in representations of polycyclic groups, Math. Proc. Camb. Phil. Soc. 88, (1980), 15-31. MR 81g:20009
  • 5. J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, John Wiley, New York, 1987. MR 89j:16023
  • 6. D.S. Passman, The Algebraic Structure of Group Rings, John Wiley, New York, 1977. MR 86j:16001
  • 7. R.S. Pierce Associative Algebras, Springer- Verlag, New York, 1982. MR 84c:16001
  • 8. J.E. Roseblade, Prime ideals in group rings of polycyclic groups, Proc. London Math. Soc. (3) 36 (1978), 385-477. MR 58:10996b

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 16S34, 20C05, 16K20, 16S50

Retrieve articles in all journals with MSC (1991): 16S34, 20C05, 16K20, 16S50


Additional Information

Robert L. Snider
Affiliation: Department of Mathematics Virginia Tech Blacksburg, Virginia 24061-0123
Email: snider@math.vt.edu

DOI: https://doi.org/10.1090/S0002-9939-96-03368-0
Keywords: Group ring, endomorphism ring, division ring
Received by editor(s): October 17, 1994
Communicated by: Ken Goodearl
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society