CENTRAL UNITS OF INTEGRAL GROUP RINGS
OF NILPOTENT GROUPS

E. JESPERS, M. M. PARMENTER, AND S. K. SEHGAL

(Communicated by Ronald Solomon)

Abstract. In this paper a finite set of generators is given for a subgroup of
finite index in the group of central units of the integral group ring of a finitely
generated nilpotent group.

In this paper we construct explicitly a finite set of generators for a subgroup of
finite index in the centre $Z(U(\mathbb{Z}G))$ of the unit group $U(\mathbb{Z}G)$ of the integral group
ring $\mathbb{Z}G$ of a finitely generated nilpotent group G. Ritter and Sehgal [4] did the
same for finite groups G, giving generators which are a little more complicated.
They also gave in [2] necessary and sufficient conditions for $Z(U(\mathbb{Z}G))$ to be trivial;
recall that the units $\pm G$ are called the trivial units. We first give a finite set of
generators for a subgroup of finite index in $Z(U(\mathbb{Z}G))$ when G is a finite nilpotent
group. Next we consider an arbitrary finitely generated nilpotent group and prove
that a central unit of $\mathbb{Z}G$ is a product of a trivial unit and a unit of $\mathbb{Z}T$, where T
is the torsion subgroup of G. As an application we obtain that the central units
of $\mathbb{Z}G$ form a finitely generated group and we are able to give an explicit set of
generators for a subgroup of finite index.

1. Finite nilpotent groups

Throughout this section G is a finite group. When G is Abelian, it was shown in
[1] that the Bass cyclic units generate a subgroup of finite index in the unit group
$U(\mathbb{Z}G)$. Using a stronger version of this result, also proved by Bass in [1], we will construct
a finite set of generators from the Bass cyclic units when G is finite nilpotent.

Our notation will follow that in [6]. The following lemma is proved in [1].

Lemma 1. The images of the Bass cyclic units of $\mathbb{Z}G$ under the natural homomorphism $j : U(\mathbb{Z}G) \to K_1(\mathbb{Z}G)$ generate a subgroup of finite index.

Let L denote the kernel of this map j, and B the subgroup of $U(\mathbb{Z}G)$ generated
by the Bass cyclic units. It follows that there exists an integer m such that $z^m \in LB$
for all $z \in Z(U(\mathbb{Z}G))$, and so we can write $z^m = lb_1b_2 \cdots b_k$ for some $l \in L$ and
Bass cyclic units b_i.

Received by the editors August 4, 1994.

1991 Mathematics Subject Classification. Primary 16U60, 20C05, 20C07; Secondary 20C10,
20C12.

This work is supported in part by NSERC Grants OGP0036631, A8775 and A5300, Canada,
and by DGICYT, Spain.

©1996 American Mathematical Society
Next, let Z_i denote the i-th centre of G, and suppose from now on that G is nilpotent of class n. For any $x \in G$ and Bass cyclic unit $b \in \mathbb{Z}(x)$, we define

$$b(1) = b$$

and for $2 \leq i \leq n$

$$b(i) = \prod_{g \in Z_i} b^g_{(i-1)},$$

where $\alpha^g = g^{-1} \alpha g$ for $\alpha \in \mathbb{Z}G$. Note that by induction $b(i)$ is central in $\mathbb{Z}(Z_i, x)$ and independent of the order of the conjugates in the product expression. In particular, $b(n) \in Z(\mathcal{U}(\mathbb{Z}G))$.

Recall again that if $z \in Z(\mathcal{U}(\mathbb{Z}G))$, then $z^m = lb_1b_2 \cdots b_k$ for some $l \in L$ and Bass cyclic units b_i. Since $K_1(\mathbb{Z}G)$ is Abelian, we can write

$$z^m|Z_2|Z_3| \cdots |Z_n| = (lb_1b_2 \cdots b_k)|Z_2|Z_3| \cdots |Z_n|$$

for some $l_1 \in L$ and for some $l_2 \in L$ and for some $l' \in L$. Since each $b_i(n)$ is in $Z(\mathcal{U}(\mathbb{Z}G))$, we conclude that $l' \in L \cap Z(\mathcal{U}(\mathbb{Z}G))$. But we shall show next that $L \cap Z(\mathcal{U}(\mathbb{Z}G))$ is trivial, so $l' \in \pm Z(G)$. The argument uses the same idea as in [3, Lemma 3.2].

For every primitive central idempotent e in the rational group algebra QG, the simple ring QGe has a reduced norm which we denote by nr_e. Further, denote

$$m_e = \sqrt{[QGe : Z(QGe)]}$$

and let

$$r = \prod_e m_e.$$

Now let $l' \in L \cap Z(\mathcal{U}(\mathbb{Z}G))$. By definition of $K_1(\mathbb{Z}G)$ this means that a suitable matrix

$$\begin{bmatrix}
 l' \\
 1 \\
 \cdots \\
 1
\end{bmatrix}$$

is a product of commutators. Therefore $l'e$ has reduced norm one. Since $l'e$ is also central, we obtain

$$(l'e)^{m_e} = nr(l'e)e = e.$$

Hence

$$l'e = 1.$$

So l' is a torsion central unit, and therefore is trivial [7, Corollary 1.7, page 4].

Since $Z(\mathcal{U}(\mathbb{Z}G))$ is finitely generated (see, e.g., [2]), $(\mathcal{U}(\mathbb{Z}G))|Z_2|Z_3| \cdots |Z_n|$ is of finite index. But we have just seen that the latter subgroup is contained in the subgroup generated by $\pm Z(G)$ and $\{b_i(n) : b \text{ a Bass cyclic unit} \}$. We have proved
Proposition 2. Let \(G \) be a finite nilpotent group of class \(n \). Then
\[
\langle b_{i(a)} \mid b \text{ a Bass cyclic} \rangle
\]
is of finite index in \(Z(\mathcal{U}(\mathbb{Z}G)) \).

Remark. Note that our method for constructing generators for a subgroup of finite index in \(Z(\mathcal{U}(\mathbb{Z}G)) \) can be adapted for some other classes of finite groups \(G \). For example, if \(G = D_{2n} = \langle a, b \mid x^n = 1, y^2 = 1, yx = x^{n-1}y \rangle \), the dihedral group of order \(2n \), then the only nontrivial Bass cyclic units \(b \) of \(\mathbb{Z}D_{2n} \) belong to \(\mathbb{Z}(x) \). It follows that \(bb^y = b^yb \) is central. Our proof now remains valid and yields that \(\langle bb^y \mid b \text{ a Bass cyclic in } \mathbb{Z}(x) \rangle \) is of finite index in \(Z(\mathcal{U}(\mathbb{Z}D_{2n})) \).

2. FINITELY GENERATED NILPOTENT GROUPS

We will now consider central units of an integral group ring of an arbitrary finitely generated nilpotent group \(G \). The torsion subgroup of \(G \) is denoted \(T \). First we show that central units of \(\mathbb{Z}G \) have the following decomposition.

Proposition 3. Let \(G \) be a finitely generated nilpotent group. Every \(u \in Z(\mathcal{U}(\mathbb{Z}G)) \) can be written as \(u = rg, r \in \mathbb{Z}T, g \in G \).

Proof. Let \(F = G/T \). Since \(T \) is finite and \(F \) acts on the set of primitive central idempotents of \(\mathbb{Q}T \) by conjugation, by adding the idempotents in an orbit of this action we obtain
\[
\mathbb{Q}T = \bigoplus (\mathbb{Q}T)e_i = \bigoplus R_i,
\]
where \(e_i \) are primitive central idempotents of \(\mathbb{Q}G \). Then \(\mathbb{Q}G \) is the crossed product
\[
(\ast) \quad \mathbb{Q}G = \mathbb{Q}T \ast F = \left(\bigoplus R_i \right) \ast F = \bigoplus R_i \ast F.
\]
Decompose \(u \) as a sum of elements in (\(\ast \)):
\[
u = \bigoplus \left(\sum_{j=1}^{n} u_jf_j \right), \quad 0 \neq u_j \in R_i, f_j \in G, \text{ for each } j.
\]
We assume that we have put together the \(u_j \)'s with the same \(f_jT \in G/T \), namely for \(k \neq j, f_kT \neq f_jT \).

We claim that \(n = 1 \). Let us denote by \(- \) the projection of \(\mathbb{Q}G \) onto \(R_i \ast F \). Then since \(u \) is central we have \(\mathbb{Q}T \pi = \pi \mathbb{Q}T \), which implies \(\mathbb{Q}T u_jf_j = u_jf_j \mathbb{Q}T \) for all \(j \). It follows that \(u_j \) is not a zero divisor provided \(R_i \) has only one simple (artinian) component, and so \(u_j \) is a unit. The only time \(u_j \) can be a nonunit is when it has some zero components in the simple components of \(R_i \). However, by the construction of \(R_i \), these latter components can be moved to any other place by conjugating suitably. But they must stay put due to the facts that \(F \) is ordered and \(\pi \) is central. It follows that \(u_j \) is a unit for all \(j \). Hence, working in \(R_i \ast F \) and using again that \(F \) is ordered, it follows by a classical argument that \(\pi = \sum_j u_jf_j \) is simply equal to \(u_nf_n \) as claimed.

Changing notation, we write
\[
u = \bigoplus \alpha f, \quad \alpha \in R_i, f \in G.
\]
Let $k = |\text{Aut}(T)|$, so f^k commutes with T for $f \in G$. Hence
\[u^k = \bigoplus (\alpha f)^k = \bigoplus \beta f^k, \quad \beta \in R_t \]
(note that the number of summands in u^k is the same as the number of summands in u, because each α is a unit in R_t), and thus
\[u^k = (u^k)^t = \bigoplus (\beta f^k)^t = \bigoplus \beta f^k, \quad t \in T. \]
The last step follows from the fact that conjugation will preserve the order on the fT's in the ordered group F. Since $(f^k)^t = tf^k$, we can choose k large enough so that all the f^k commute with each other and with T. Thus we may assume that
\[u^k = \bigoplus \beta f^k. \]
Again, we put together all β with the same f^kT. In other words, we assume that $u^k = \bigoplus \beta f^k$ with all f^kT different. Note that these new values of β all lie in ZT. Furthermore, we now obtain for each $t \in T$,
\[u^k = (u^k)^t = \bigoplus (\beta f^k)^t, \]
and thus $\beta^t = \beta$. So the ring R generated by all the β is commutative. Again, if necessary, replacing k by a high enough power, we may assume that the group A generated by all the f^k in the summation of u^k is a torsion-free Abelian group, and thus a free Abelian group. Consequently
\[u^k \in RA, \]
the commutative group ring of A over R. Let $N = \text{Rad}(R)$ be the set of nilpotent elements of R. Now ZT has only trivial idempotents [6, Theorem 2.20, page 25]. Hence since $R \subseteq ZT$ and since idempotents of R/N can be lifted to R, it follows that R/N also has only trivial idempotents. Therefore [6, Lemma 3.3, page 55] together with an inductive argument tells us that $(R/N)A$ has only trivial units. It follows that
\[u^k = \beta f^k + \text{nilpotent elements}. \]
But as each β is a sum of units in various R_t, it follows that the last term must be zero. Hence $u^k = \beta f^k$, and thus all fT's in the original decomposition of $u = \bigoplus \alpha f$ were in the same coset of T. Thus $u = rf$ as required. \hfill \Box

We give two important consequences of the last result. We say that $Z(\mathcal{U}(ZG))$ is trivial if it contains only trivial units.

Corollary 4. Let G be a finitely generated nilpotent group. If $Z(\mathcal{U}(ZT))$ is trivial, then $Z(\mathcal{U}(ZG))$ is trivial.

Proof. Let $u \in Z(\mathcal{U}(ZG))$ be nontrivial. Then the support of u contains two different elements, say x and y. Since finitely generated nilpotent groups are residually finite, there exists a finite factor $G/N = \overline{G}$ so that $\overline{x} \neq \overline{y}$ in \overline{G} (see [5, page 149]). Hence \overline{x} has in its support at least two different elements, and thus \overline{x} is of infinite order ([7, Corollary 1.7, page 4]). By Proposition 3 we write $u = rg$, $r \in ZT$, $g \in G$. Since u is central, r commutes with g. It then follows easily that \overline{r}, and hence also r, is of infinite order. Moreover, there exists a positive integer n such that $(g^n, T) = 1$. Consequently it follows from $u^n = r^ng^n$ that r^k commutes with T. Thus r^k is a nontrivial unit of $Z(\mathcal{U}(ZT))$. \hfill \Box
Corollary 5. Let G be a finitely generated nilpotent group. Then $Z(\mathcal{U}(\mathbb{Z}G))$ is finitely generated. Furthermore, $(Z(\mathcal{U}(\mathbb{Z}G))\cap Z(\mathcal{U}(\mathbb{Z}T)))Z(G)$ is of finite index in $Z(\mathcal{U}(\mathbb{Z}G))$.

Proof. Let $S = Z(\mathcal{U}(\mathbb{Z}G)) \cap Z(\mathcal{U}(\mathbb{Z}T))$. First we show that $Z(\mathcal{U}(\mathbb{Z}G))/SZ(G)$ is a torsion group of bounded exponent. Indeed, let $u \in Z(\mathcal{U}(\mathbb{Z}G))$. Because of Proposition 3 write $u = rg$, with $r \in \mathcal{U}(\mathbb{Z}T)$ and $g \in G$. Considering the natural epimorphism $\mathbb{Z}G \to \mathbb{Z}(G/T)$ and using the fact that $Z(\mathcal{U}(\mathbb{Z}(G/T)))$ is trivial because G/T is ordered, it follows that $gT \in Z(G/T)$. Hence $(g^k, T) = 1$ and $g^l \in Z(G)$ for $k = [\text{Aut}(T)]$ and $l = k[T]$. Now since u is central, r and g commute. Therefore

$$u^l = r^l g^l$$

Consequently $u^l \in SZ(G)$, and the claim follows.

As a subgroup of the finitely generated group $Z(\mathcal{U}(\mathbb{Z}T))$, the group S is itself finitely generated. Hence so is $SZ(G)$. Since the torsion subgroup of $Z(\mathcal{U}(\mathbb{Z}G))$ is finite (see for example [6, page 46]), the above claim now easily yields that $Z(\mathcal{U}(\mathbb{Z}G))$ is indeed finitely generated.

We will now construct finitely many generators for the central units of any finitely generated nilpotent group.

Let n be the nilpotency class of T and h the Hirsch number of G/T. Let $k = [\text{Aut}(T)]$. Further let x_1, \cdots, x_h be elements of G such that for each $1 \leq i \leq h$ the group $G_i = \langle T, x_1, \cdots, x_i \rangle$ is normal in G and $G_i/G_{i-1} \cong \mathbb{Z}$, where $G_0 = T$. For any generator $b_{(n)}$ described in Proposition 2 define

$$b_{(n)}^{(0)} = b_{(n)}$$

and for $1 \leq i \leq h$

$$b_{(n)}^{(i)} = \prod_{0 \leq j < k} \left(b_{(n)}^{(i-1)}\right)^{x^j_i}.$$

Since each $b_{(n)}^{(i)}$ is in $Z(\mathcal{U}(\mathbb{Z}T))$, the order of the conjugates in the product expression for $b_{(n)}^{(i)}$ is unimportant. It follows by induction that $b_{(n)}^{(i)}$ is in $Z(\mathcal{U}(\mathbb{Z}G_i))$. In particular, $b_{(n)}^{(h)} \in Z(\mathcal{U}(\mathbb{Z}G))$.

Theorem 6. Let G be a finitely generated nilpotent group. Suppose n is the nilpotency class of T and h is the Hirsch number of G/T. Then

$$\langle b_{(n)}^{(h)} \mid b \text{ a Bass cyclic of } \mathbb{Z}T \rangle Z(G)$$

is of finite index in $Z(\mathcal{U}(\mathbb{Z}G))$.

Proof. Because of Corollary 5 the group $SZ(G)$ with $S = Z(\mathcal{U}(\mathbb{Z}G)) \cap Z(\mathcal{U}(\mathbb{Z}T))$ is of finite index in $Z(\mathcal{U}(\mathbb{Z}G))$. Let $\alpha_1, \cdots, \alpha_p$ be a finite set of generators for S. By Proposition 2 there exists a positive integer m such that all $\alpha_1^m, \cdots, \alpha_p^m$ are in $\langle b_{(n)} \mid b \text{ a Bass cyclic in } \mathbb{Z}T \rangle$. For simplicity, write $\alpha = \alpha_1^m$. Then

$$\alpha = \prod b_{(n)}^{(i)},$$

where the product runs over a finite number of Bass cyclic units of $\mathbb{Z}T$. Since α is in $Z(\mathcal{U}(\mathbb{Z}G))$, and using the notation introduced above, we obtain

$$\alpha^k = \alpha x_1^i \cdots x_h^{k-i}.$$
As each $b_{(n)}$ is central in ZT, this implies
\[\alpha^k = \prod b_{(n)}^{(1)}. \]
Continuing this process one obtains that
\[\alpha^{kh} = \prod b_{(n)}^{(h)}. \]
Since the group generated by $\alpha_{mkh}, \cdots, \alpha_{pkh}$ is of finite index in S, the result follows.

Note that Corollary 4 can now also be obtained as an easy consequence of Theorem 6.

We now give an example showing that the converse of Corollary 4 does not hold.

Example. Let $G = \langle a, x \mid a^x = a^3, a^8 = 1 \rangle$. Clearly G is a nilpotent group with $T = \langle a \rangle$, a cyclic group of order 8. From Higman’s result (see [6]) it follows that $Z(U(ZT))$, modulo the trivial units, is a free Abelian group of rank 1. We now show that $Z(U(ZG))$ contains only trivial units. For this suppose u is a nontrivial central unit in ZG. By Proposition 3, we can write $u = rx^i$ for some integer i and $r \in U(ZT)$. We know from the above that r is of infinite order, and since r commutes with x, it must be in $Z(U(ZG))$.

Because the only Bass cyclic unit, up to inverses, in ZT is
\[b = (1 + a + a^2)^4 - 10\hat{a}, \quad \hat{a} = 1 + a + \cdots + a^7, \]
Proposition 2 yields that
\[r^k = b^{l}, \]
for some nonzero integers k, l. Observe, however, that $b^5 = b^{-3}$. Since $b^k = r^k$ is central in ZG, we obtain $b^l = b^{-3}$, contradicting the fact that b is of infinite order.

References

5. Derek J.S. Robinson, A course in the theory of groups, Springer Verlag, 1982. MR 84k:20001

(E. Jespers and M. M. Parmenter) DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND, ST. JOHN’S, NEWFOUNDLAND, CANADA A1C 5S7
E-mail address: ejespers@albert.math.mun.ca
E-mail address: mparmen@plato.ucs.mun.ca

(S. K. Sehgal) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA, CANADA T6G 2G1
E-mail address: ss sehgal@schur.math.ualberta.ca