HNN bases and highdimensional knots
Author:
Daniel S. Silver
Journal:
Proc. Amer. Math. Soc. 124 (1996), 12471252
MSC (1991):
Primary 57Q45; Secondary 20E06, 20F05
MathSciNet review:
1343725
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: There exists a knot group having HNN bases of two types: bases that are arbitrarily large finitely presented and bases that are arbitrarily large finitely generated but not finitely presented. Any knot with such a group has a Seifert manifold that can be converted to a minimal one by a finite sequence of ambient  and surgeries, but cannot be converted by surgeries alone.
 1.
Gilbert
Baumslag, On abelian hopfian groups. I, Math. Z.
78 (1962), 53–54. MR 0142633
(26 #202)
 2.
Gilbert
Baumslag and Peter
B. Shalen, Amalgamated products and finitely presented groups,
Comment. Math. Helv. 65 (1990), no. 2, 243–254.
MR
1057242 (91j:20071), http://dx.doi.org/10.1007/BF02566605
 3.
Robert
Bieri and Ralph
Strebel, Almost finitely presented soluble groups, Comment.
Math. Helv. 53 (1978), no. 2, 258–278. MR 0498863
(58 #16890)
 4.
I.
M. Chiswell, Exact sequences associated with a graph of
groups, J. Pure Appl. Algebra 8 (1976), no. 1,
63–74. MR
0399296 (53 #3147)
 5.
C.
McA. Gordon, Homology of groups of surfaces in the 4sphere,
Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1,
113–117. MR
591977 (83d:57016), http://dx.doi.org/10.1017/S0305004100057996
 6.
Jonathan
A. Hillman, High dimensional knot groups which are not twoknot
groups, Bull. Austral. Math. Soc. 16 (1977),
no. 3, 449–462. MR 0645406
(58 #31098)
 7.
Michel
A. Kervaire, On higher dimensional knots, Differential and
Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton
Univ. Press, Princeton, N.J., 1965, pp. 105–119. MR 0178475
(31 #2732)
 8.
J.
Levine, Unknotting spheres in codimension two, Topology
4 (1965), 9–16. MR 0179803
(31 #4045)
 9.
T. Maeda, Knotted surfaces in the sphere with no minimal Seifert manifolds, preprint.
 10.
D.
I. Moldavanskiĭ, Certain subgroups of groups with one
defining relation, Sibirsk. Mat. Ž. 8 (1967),
1370–1384 (Russian). MR 0220810
(36 #3862)
 11.
B.H. Neumann, Some remarks on infinite groups, J. London Math. Soc. 12 (1937), 411.
 12.
E.S. Rapaport, Knotlike groups, Annals of Math. Studies, vol. 84, Princeton Univ. Press, Princeton, 1975, pp. 119133.
 13.
Daniel
S. Silver, Examples of 3knots with no minimal Seifert
manifolds, Math. Proc. Cambridge Philos. Soc. 110
(1991), no. 3, 417–420. MR 1120476
(92f:57030), http://dx.doi.org/10.1017/S0305004100070481
 14.
Guang
Fu Cao and Cheng
Zu Zou, Stable convergence of operatorvalued functions, Acta
Math. Sinica 35 (1992), no. 6, 853–858
(Chinese, with Chinese summary). MR 1219389
(94c:47039)
 15.
D.
S. Silver, On knotlike groups and ribbon concordance, J. Pure
Appl. Algebra 82 (1992), no. 1, 99–105. MR 1181096
(94a:57021), http://dx.doi.org/10.1016/00224049(92)900136
 16.
John
Stallings, A finitely presented group whose 3dimensional integral
homology is not finitely generated, Amer. J. Math. 85
(1963), 541–543. MR 0158917
(28 #2139)
 1.
 G. Baumslag, A remark on generalized free products, Proc.Amer. Math. Soc. 13 (1962), 5354. MR 26:202
 2.
 G. Baumslag, P.B. Shalen, Amalgamated products and finitely presented groups, Comment. Math. Helv. 65 (1990), 243254. MR 91j:20071
 3.
 R. Bieri, R. Strebel, Almost finitely presented soluble groups, Comment. Math. Helv. 53 (1978), 258278. MR 58:16890
 4.
 I.M. Chiswell, Exact sequences associated with a graph of groups, J. Pure Appl. Alg. 8 (1976), 6374. MR 53:3147
 5.
 C.McA. Gordon, Homology of groups of surfaces in the 4sphere, Math. Proc. Camb. Phil. Soc. 89 (1981), 113117. MR 83d:57016
 6.
 J. Hillman, High dimensional knot groups which are not twoknot groups, Bull. Austral. Math. Soc. 16 (1977), 449462. MR 58:31098
 7.
 M. Kervaire, On higher dimensional knots, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse) (S.S. Cairns, ed.), Princeton University Press, Princeton, 1965, pp. 105109. MR 31:2732
 8.
 J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 916. MR 31:4045
 9.
 T. Maeda, Knotted surfaces in the sphere with no minimal Seifert manifolds, preprint.
 10.
 D.I. Moldavanskii, Certain subgroups of groups with one defining relation (in Russian),
Sibirsk. Math. Z. 8 (1967), 13701384. MR 36:3862
 11.
 B.H. Neumann, Some remarks on infinite groups, J. London Math. Soc. 12 (1937), 411.
 12.
 E.S. Rapaport, Knotlike groups, Annals of Math. Studies, vol. 84, Princeton Univ. Press, Princeton, 1975, pp. 119133.
 13.
 D.S. Silver, Examples of knots with no minimal Seifert manifolds, Math. Proc. Camb. Phil. Soc. 110 (1991), 417420. MR 92f:57030
 14.
 D.S. Silver, On the existence of minimal Seifert manifolds, Math. Proc. Camb. Phil. Soc. 114 (1993), 103109. MR 94c:47039
 15.
 D.S. Silver, On knotlike groups and ribbon concordance, J. Pure Appl. Alg. 82 (1992 99105). MR 94a:57021
 16.
 J. Stallings, A finitely presented group whose 3dimensional integral homology is not finitely generated, Amer. Journal of Math. 95 (1963), 541543. MR 28:2139
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
57Q45,
20E06,
20F05
Retrieve articles in all journals
with MSC (1991):
57Q45,
20E06,
20F05
Additional Information
Daniel S. Silver
Affiliation:
Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688
Email:
silver@mathstat.usouthal.edu
DOI:
http://dx.doi.org/10.1090/S0002993996035204
PII:
S 00029939(96)035204
Received by editor(s):
May 17, 1994
Communicated by:
James West
Article copyright:
© Copyright 1996 American Mathematical Society
