Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A free product of finitely generated
nilpotent groups amalgamating a cycle
that is not subgroup separable


Authors: R. B. J. T. Allenby and David Doniz
Journal: Proc. Amer. Math. Soc. 124 (1996), 1003-1005
MSC (1991): Primary 20E06, 20E26, 20F18; Secondary 20F10
DOI: https://doi.org/10.1090/S0002-9939-96-03567-8
MathSciNet review: 1350930
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit a counterexample to a recent assertion concerning the subgroup separability of groups in the title. The example also serves as a simplification of work of Gitik and Rips.


References [Enhancements On Off] (What's this?)

  • 1. R. B. J. T. Allenby, The potency of cyclically pinched one-relator groups, Arch. Math. 36 (1981), 204--210. MR 83c:20047
  • 2. G. Baumslag, On the residual finiteness of generalized free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 192--209. MR 26:2489
  • 3. A. M. Brunner, R. G. Burns, D. Solitar, The subgroup separability of free products of two free groups with cyclic amalgamation, Contemp. Math., no. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 90--115. MR 86e:20033
  • 4. B. Evans, Cyclic amalgamations of residually finite groups, Pacific J. Math. 55 (1974), 371--379. MR 51:8257
  • 5. R. Gitik, E. Rips, A necessary condition for $A*_{a=b}B$ to be LERF, Israel J. Math. 73 (1991), 123--125. 92g:20046
  • 6. G. Kim, Cyclic subgroup separability of generalized free products, Canadian Math. Bull. 36 (1993), 296--302. MR 95d:20056
  • 7. G. Kim, James McCarron, On amalgamated free products of residually $p$-finite groups, J. Algebra 162 (1993), 1--11. MR 94k:20049
  • 8. H. L. Koay, P. C. Wong, Generalized free products of $\pi_{\mathrm{c}}$ groups, Rocky Mountain J. Math. 22 (1992), 1589--1593. MR 93j:20055
  • 9. W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann. 111 (1935), 259--280.
  • 10. E. Rips, An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup, Israel J. Math. 70 (1990), 104--110. MR 91d:20029
  • 11. N. S. Romanovskii, On the residual finiteness of free products with respect to subgroups, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1324--1329 (Russian). MR 41:1885
  • 12. P. Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. 17 (1978), 555--565. MR 58:12996
  • 13. C. Y. Tang, On the subgroup separability of generalized free products of nilpotent groups, Proc. Amer. Math. Soc. 113 2 (1991), 313--318. MR 92c:20043

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20E06, 20E26, 20F18, 20F10

Retrieve articles in all journals with MSC (1991): 20E06, 20E26, 20F18, 20F10


Additional Information

R. B. J. T. Allenby
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England
Email: pmt6ra@leeds.ac.uk

David Doniz
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England

DOI: https://doi.org/10.1090/S0002-9939-96-03567-8
Keywords: Generalized free products, nilpotent groups, residual finiteness, subgroup separability
Received by editor(s): May 25, 1994
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society