Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces

Author:
Li Zhong

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1459-1465

MSC (1991):
Primary 30C62; Secondary 32G15, 14H15

DOI:
https://doi.org/10.1090/S0002-9939-96-03164-4

MathSciNet review:
1301053

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a closed geodesic in any infinite-

dimensional Teichmüller space. The construction also leads to a proof of non-differentiability of the metric in infinite-dimensional Teichmüller spaces, which provides a negative answer to a problem of Goldberg.

**[E]**C. J. Earle,*The Teichmüller distance is differentiable*, Duke Math. J.**44**(1977), 389-397. MR**56:3358****[EE]**C. J. Earle and J. Eells,*On the differential geometry of Teichmüler spaces*, J. Analyse Math.**19**(1967), 35--52. MR**36:3975****[EKK]**C. J. Earle, I. Kra and S. L. Krushkal',*Holomorphic motions and Teichmüller spaces*, Trans. of Amer. Math. Soc.,**343**(1994), 927--948. MR**94h:32035****[Ga]**F. P. Gardiner,*Teichmüller theory and quadratic differentials*, John Wiley and Sons, New York, 1987. MR**88m:32044****[Go]**L. R. Goldberg,*On the shape of the unit sphere in*, Proc. of Amer. Math. Soc.**118**(1993), 1179--1185. MR**93m:46019****[K]**S. Kravetz,*On the geometry of Teichmüller spaces and the structure of their modular groups*, Ann. Acad. Sci. Fenn.**138**(1959), 1--35. MR**26:6402****[L1]**Li Zhong,*Non-uniqueness of geodesics in infinite-dimensional Teichmüller spaces*, Complex Variables, Theory and Applications**16**, 216--372. MR**92c:32024****[L2]**Li Zhong,*Non-uniqueness of geodesics in infinite-dimensional Teichmüller spaces*(II), Ann. Acad. Sci. Fenn. Series A. I. Math.**18**, 355--367.**[L3]**Li Zhong,*Non-convexity of spheres in infinite-dimensional Teichmüller spaces*, Science in China**37**(1994), 924--932.**[R]**H. L. Royden,*Report on the Teichmüller metric*, Proc. Nat. Acad. Sci. U.S.A.**65**(1970), 497--499. MR**41:3757****[RK]**E. Reich and K. Strebel,*Extremal quasiconformal mappings with given boundary values*, Contributions to Analysis, Academic Press, New York, 1974, pp. 375--391. MR**50:13511****[S]**K. Strebel,*On quadratic differentials and extremal quasiconformal mappings*, Proceedings Int. Congr. Math. Vancouver 1974, Volume 2, Canadian Mathematical Congress, 1975, pp. 223--227. MR**58:22549****[T]**H. Tanigawa,*Holomorphic families of geodesic discs in infinite dimensional Teichmüller spaces*, Nagoya Math. J.**127**(1992), 117--128. MR**93i:32027**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30C62,
32G15,
14H15

Retrieve articles in all journals with MSC (1991): 30C62, 32G15, 14H15

Additional Information

**Li Zhong**

Affiliation:
Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China

Email:
liz@bepc2.ihep.ac.cn

DOI:
https://doi.org/10.1090/S0002-9939-96-03164-4

Keywords:
Quasiconformal mappings,
Teich\-m\"{u}l\-ler spaces

Received by editor(s):
August 8, 1994

Received by editor(s) in revised form:
October 14, 1994

Additional Notes:
Supported in part by the NSF Grant (Tian-yuan) of China.

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 1996
American Mathematical Society