Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces


Author: Li Zhong
Journal: Proc. Amer. Math. Soc. 124 (1996), 1459-1465
MSC (1991): Primary 30C62; Secondary 32G15, 14H15
DOI: https://doi.org/10.1090/S0002-9939-96-03164-4
MathSciNet review: 1301053
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a closed geodesic in any infinite-
dimensional Teichmüller space. The construction also leads to a proof of non-differentiability of the metric in infinite-dimensional Teichmüller spaces, which provides a negative answer to a problem of Goldberg.


References [Enhancements On Off] (What's this?)

  • [E] C. J. Earle, The Teichmüller distance is differentiable, Duke Math. J. 44 (1977), 389-397. MR 56:3358
  • [EE] C. J. Earle and J. Eells, On the differential geometry of Teichmüler spaces, J. Analyse Math. 19 (1967), 35--52. MR 36:3975
  • [EKK] C. J. Earle, I. Kra and S. L. Krushkal', Holomorphic motions and Teichmüller spaces, Trans. of Amer. Math. Soc., 343 (1994), 927--948. MR 94h:32035
  • [Ga] F. P. Gardiner, Teichmüller theory and quadratic differentials, John Wiley and Sons, New York, 1987. MR 88m:32044
  • [Go] L. R. Goldberg, On the shape of the unit sphere in $Q(\Delta )$, Proc. of Amer. Math. Soc. 118 (1993), 1179--1185. MR 93m:46019
  • [K] S. Kravetz, On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. 138 (1959), 1--35. MR 26:6402
  • [L1] Li Zhong, Non-uniqueness of geodesics in infinite-dimensional Teichmüller spaces, Complex Variables, Theory and Applications 16, 216--372. MR 92c:32024
  • [L2] Li Zhong, Non-uniqueness of geodesics in infinite-dimensional Teichmüller spaces (II), Ann. Acad. Sci. Fenn. Series A. I. Math. 18, 355--367.
  • [L3] Li Zhong, Non-convexity of spheres in infinite-dimensional Teichmüller spaces, Science in China 37 (1994), 924--932.
  • [R] H. L. Royden, Report on the Teichmüller metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 497--499. MR 41:3757
  • [RK] E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to Analysis, Academic Press, New York, 1974, pp. 375--391. MR 50:13511
  • [S] K. Strebel, On quadratic differentials and extremal quasiconformal mappings, Proceedings Int. Congr. Math. Vancouver 1974, Volume 2, Canadian Mathematical Congress, 1975, pp. 223--227. MR 58:22549
  • [T] H. Tanigawa, Holomorphic families of geodesic discs in infinite dimensional Teichmüller spaces, Nagoya Math. J. 127 (1992), 117--128. MR 93i:32027

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30C62, 32G15, 14H15

Retrieve articles in all journals with MSC (1991): 30C62, 32G15, 14H15


Additional Information

Li Zhong
Affiliation: Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China
Email: liz@bepc2.ihep.ac.cn

DOI: https://doi.org/10.1090/S0002-9939-96-03164-4
Keywords: Quasiconformal mappings, Teich\-m\"{u}l\-ler spaces
Received by editor(s): August 8, 1994
Received by editor(s) in revised form: October 14, 1994
Additional Notes: Supported in part by the NSF Grant (Tian-yuan) of China.
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society