Closed geodesics and nondifferentiability of the metric in infinitedimensional Teichmüller spaces
Author:
Li Zhong
Journal:
Proc. Amer. Math. Soc. 124 (1996), 14591465
MSC (1991):
Primary 30C62; Secondary 32G15, 14H15
MathSciNet review:
1301053
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we construct a closed geodesic in any infinite dimensional Teichmüller space. The construction also leads to a proof of nondifferentiability of the metric in infinitedimensional Teichmüller spaces, which provides a negative answer to a problem of Goldberg.
 [E]
Clifford
J. Earle, The Teichmüller distance is differentiable,
Duke Math. J. 44 (1977), no. 2, 389–397. MR 0445013
(56 #3358)
 [EE]
Clifford
J. Earle and James
Eells Jr., On the differential geometry of Teichmüller
spaces, J. Analyse Math. 19 (1967), 35–52. MR 0220923
(36 #3975)
 [EKK]
C.
J. Earle, I.
Kra, and S.
L. Krushkal′, Holomorphic motions and
Teichmüller spaces, Trans. Amer. Math.
Soc. 343 (1994), no. 2, 927–948. MR 1214783
(94h:32035), http://dx.doi.org/10.1090/S00029947199412147836
 [Ga]
Frederick
P. Gardiner, Teichmüller theory and quadratic
differentials, Pure and Applied Mathematics (New York), John Wiley
& Sons, Inc., New York, 1987. A WileyInterscience Publication. MR 903027
(88m:32044)
 [Go]
Lisa
R. Goldberg, On the shape of the unit sphere in
𝑄(Δ), Proc. Amer. Math. Soc.
118 (1993), no. 4,
1179–1185. MR 1186987
(93m:46019), http://dx.doi.org/10.1090/S00029939199311869877
 [K]
Saul
Kravetz, On the geometry of Teichmüller spaces and the
structure of their modular groups, Ann. Acad. Sci. Fenn. Ser. A I No.
278 (1959), 35. MR 0148906
(26 #6402)
 [L1]
Li
Zhong, Nonuniqueness of geodesics in infinitedimensional
Teichmüller spaces, Complex Variables Theory Appl.
16 (1991), no. 4, 261–272. MR 1105200
(92c:32024)
 [L2]
Li Zhong, Nonuniqueness of geodesics in infinitedimensional Teichmüller spaces (II), Ann. Acad. Sci. Fenn. Series A. I. Math. 18, 355367.
 [L3]
Li Zhong, Nonconvexity of spheres in infinitedimensional Teichmüller spaces, Science in China 37 (1994), 924932.
 [R]
H.
L. Royden, Report on the Teichmüller metric, Proc. Nat.
Acad. Sci. U.S.A. 65 (1970), 497–499. MR 0259115
(41 #3757)
 [RK]
Edgar
Reich and Kurt
Strebel, Extremal quasiconformal mappings with given boundary
values, Contributions to analysis (a collection of papers dedicated to
Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
(50 #13511)
 [S]
Kurt
Strebel, On quadratic differentials and extremal quasiconformal
mappings, Proceedings of the International Congress of Mathematicians
(Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975,
pp. 223–227. MR 0507848
(58 #22549)
 [T]
Harumi
Tanigawa, Holomorphic families of geodesic discs in
infinitedimensional Teichmüller spaces, Nagoya Math. J.
127 (1992), 117–128. MR 1183655
(93i:32027)
 [E]
 C. J. Earle, The Teichmüller distance is differentiable, Duke Math. J. 44 (1977), 389397. MR 56:3358
 [EE]
 C. J. Earle and J. Eells, On the differential geometry of Teichmüler spaces, J. Analyse Math. 19 (1967), 3552. MR 36:3975
 [EKK]
 C. J. Earle, I. Kra and S. L. Krushkal', Holomorphic motions and Teichmüller spaces, Trans. of Amer. Math. Soc., 343 (1994), 927948. MR 94h:32035
 [Ga]
 F. P. Gardiner, Teichmüller theory and quadratic differentials, John Wiley and Sons, New York, 1987. MR 88m:32044
 [Go]
 L. R. Goldberg, On the shape of the unit sphere in , Proc. of Amer. Math. Soc. 118 (1993), 11791185. MR 93m:46019
 [K]
 S. Kravetz, On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. 138 (1959), 135. MR 26:6402
 [L1]
 Li Zhong, Nonuniqueness of geodesics in infinitedimensional Teichmüller spaces, Complex Variables, Theory and Applications 16, 216372. MR 92c:32024
 [L2]
 Li Zhong, Nonuniqueness of geodesics in infinitedimensional Teichmüller spaces (II), Ann. Acad. Sci. Fenn. Series A. I. Math. 18, 355367.
 [L3]
 Li Zhong, Nonconvexity of spheres in infinitedimensional Teichmüller spaces, Science in China 37 (1994), 924932.
 [R]
 H. L. Royden, Report on the Teichmüller metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1970), 497499. MR 41:3757
 [RK]
 E. Reich and K. Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to Analysis, Academic Press, New York, 1974, pp. 375391. MR 50:13511
 [S]
 K. Strebel, On quadratic differentials and extremal quasiconformal mappings, Proceedings Int. Congr. Math. Vancouver 1974, Volume 2, Canadian Mathematical Congress, 1975, pp. 223227. MR 58:22549
 [T]
 H. Tanigawa, Holomorphic families of geodesic discs in infinite dimensional Teichmüller spaces, Nagoya Math. J. 127 (1992), 117128. MR 93i:32027
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
30C62,
32G15,
14H15
Retrieve articles in all journals
with MSC (1991):
30C62,
32G15,
14H15
Additional Information
Li Zhong
Affiliation:
Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China
Email:
liz@bepc2.ihep.ac.cn
DOI:
http://dx.doi.org/10.1090/S0002993996031644
PII:
S 00029939(96)031644
Keywords:
Quasiconformal mappings,
Teich\m\"{u}l\ler spaces
Received by editor(s):
August 8, 1994
Received by editor(s) in revised form:
October 14, 1994
Additional Notes:
Supported in part by the NSF Grant (Tianyuan) of China.
Communicated by:
Albert Baernstein II
Article copyright:
© Copyright 1996
American Mathematical Society
