Closed geodesics and non-differentiability of the metric in infinite-dimensional Teichmüller spaces

Author:
Li Zhong

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1459-1465

MSC (1991):
Primary 30C62; Secondary 32G15, 14H15

DOI:
https://doi.org/10.1090/S0002-9939-96-03164-4

MathSciNet review:
1301053

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we construct a closed geodesic in any infinite-

dimensional Teichmüller space. The construction also leads to a proof of non-differentiability of the metric in infinite-dimensional Teichmüller spaces, which provides a negative answer to a problem of Goldberg.

**[E]**Clifford J. Earle,*The Teichmüller distance is differentiable*, Duke Math. J.**44**(1977), no. 2, 389–397. MR**0445013****[EE]**Clifford J. Earle and James Eells Jr.,*On the differential geometry of Teichmüller spaces*, J. Analyse Math.**19**(1967), 35–52. MR**0220923**, https://doi.org/10.1007/BF02788708**[EKK]**C. J. Earle, I. Kra, and S. L. Krushkal′,*Holomorphic motions and Teichmüller spaces*, Trans. Amer. Math. Soc.**343**(1994), no. 2, 927–948. MR**1214783**, https://doi.org/10.1090/S0002-9947-1994-1214783-6**[Ga]**Frederick P. Gardiner,*Teichmüller theory and quadratic differentials*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR**903027****[Go]**Lisa R. Goldberg,*On the shape of the unit sphere in 𝑄(Δ)*, Proc. Amer. Math. Soc.**118**(1993), no. 4, 1179–1185. MR**1186987**, https://doi.org/10.1090/S0002-9939-1993-1186987-7**[K]**Saul Kravetz,*On the geometry of Teichmüller spaces and the structure of their modular groups*, Ann. Acad. Sci. Fenn. Ser. A I No.**278**(1959), 35. MR**0148906****[L1]**Li Zhong,*Nonuniqueness of geodesics in infinite-dimensional Teichmüller spaces*, Complex Variables Theory Appl.**16**(1991), no. 4, 261–272. MR**1105200****[L2]**Li Zhong,*Non-uniqueness of geodesics in infinite-dimensional Teichmüller spaces*(II), Ann. Acad. Sci. Fenn. Series A. I. Math.**18**, 355--367.**[L3]**Li Zhong,*Non-convexity of spheres in infinite-dimensional Teichmüller spaces*, Science in China**37**(1994), 924--932.**[R]**H. L. Royden,*Report on the Teichmüller metric*, Proc. Nat. Acad. Sci. U.S.A.**65**(1970), 497–499. MR**0259115****[RK]**Edgar Reich and Kurt Strebel,*Extremal quasiconformal mappings with given boundary values*, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR**0361065****[S]**Kurt Strebel,*On quadratic differentials and extremal quasi-conformal mappings*, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 223–227. MR**0507848****[T]**Harumi Tanigawa,*Holomorphic families of geodesic discs in infinite-dimensional Teichmüller spaces*, Nagoya Math. J.**127**(1992), 117–128. MR**1183655**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30C62,
32G15,
14H15

Retrieve articles in all journals with MSC (1991): 30C62, 32G15, 14H15

Additional Information

**Li Zhong**

Affiliation:
Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China

Email:
liz@bepc2.ihep.ac.cn

DOI:
https://doi.org/10.1090/S0002-9939-96-03164-4

Keywords:
Quasiconformal mappings,
Teich\-m\"{u}l\-ler spaces

Received by editor(s):
August 8, 1994

Received by editor(s) in revised form:
October 14, 1994

Additional Notes:
Supported in part by the NSF Grant (Tian-yuan) of China.

Communicated by:
Albert Baernstein II

Article copyright:
© Copyright 1996
American Mathematical Society