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Abstract. We analyse the growth rate of a number theoretic function related

to the operational complexity of integers

The purpose of this note is to answer a question raised by Smale on the cost of
computing integers using arithmetic operations. More precisely, let τ : N → N be
the function that associates to each number n the minimum number of arithmetic
operations (addition, subtraction and multiplication) one needs to obtain n starting
from 1 and 2. Although 2 is obtainable from 1 in one operation, we have included
it as a “starting number” (like 1) to simplify our formulas and induction.

Definition. An allowable list of length k is a list of k integers n1, n2, . . . , nk such
that for each l ≤ k, there exist integers −1 ≤ i, j < l such that nl = op(ni, nj),
where op is either addition, subtraction or multiplication and n−1 = 1, n0 = 2.

It follows that τ(n) ≤ k if and only if there exists an allowable list of length k,
{n1, . . . , nk} with nk = n. Also, τ(n) = k if τ(n) ≤ k but τ(n) is not less than or
equal to k − 1.

Proposition 1. (a) log log(n) ≤ τ(n) ≤ 2 log(n), where log is the logarithm in
base 2.

(b) τ(22k) = k = log(log(22k)).

Proof. Suppose that τ(n) = k. Then there exists an allowable list {n1, . . . , nk} with
nk = n. Let us consider the allowable list {m1, . . . ,mk}, where ml = ml−1×ml−1.
By induction we have that nl ≤ ml for every l ≤ k because mi ≤ mj for i ≤ j.

Therefore, n ≤ mk = 22k . Thus, log(log(n)) ≤ k = τ(n). This proves (b) and
the first inequality in (a). To prove the second inequality we consider the binary
expansion n = 2k1 + 2k2 + · · · + 2kl , with 0 ≤ k1 < · · · < kl. The following is an
allowable sequence:

{22, 23, . . . , 2kl , 2kl + 2kl−1 , . . . , 2kl + · · ·+ 2k1 = n}.

Hence, τ(n) ≤ kl + l ≤ 2 log(n).

Remark. τ(2n) ≤ 2 log log(2n). In fact, if n = 2k1 + · · ·+ 2kl , then

{2, 22, 222

, . . . , 22kl , 22kl × 22kl−1
, . . . , 22kl+···+2k1

= n}

is an allowable list and, therefore, τ(n) ≤ kl + l ≤ 2 log log(2n).
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Lemma 1. Let B(k) = {n ∈ N; τ(n) ≤ k}. Then the cardinality #B(k) ≤ 3k ×
((k + 1)!)2.

Proof. Let us consider the space Sk = {s = (s1, . . . , sk)}, where each sl = (opl, il, jl)
and opl ∈ {+,×−}, il, jl are integers smaller than l. To each point s ∈ Sk we can
associate an allowable sequence n1, . . . , nk by taking nl = opl(nil , njl), starting
with n−1 = 1 and n0 = 2. In particular we have a mapping φ:Sk → B(k) which
associates to s the integer nk constructed above. Since φ is onto, it follows that
the cardinality of B(k) is at most equal to the cardinality of Sk which is equal to
3k × ((k + 1)!)2.

Definition. A property P holds for almost all integers if the number of integers
smaller than n that do not satisfy P is n× o(n).

Theorem. If ε > 0, then almost all integers n satisfy the property:

τ(n) ≥ log(n)

(log log(n))1+ε
.

Proof. Suppose, by contradiction, that this is not true. Let

ψ(n) =
log(n)

(log log(n))1+ε
.

Then, there exists 0 < ρ < 1 such that, for infinitely many values of m, the
cardinality of the set

Cm = {n ≤ m; τ(n) ≤ ψ(n)}
is bigger than ρ ×m. If ψ(m) ≤ k < ψ(m) + 1, then Cm ⊂ Bk. Therefore, by the
lemma, ρ×m ≤ 3k((k + 1)!)2 for infinitely many values of m. Thus,

ρ×m ≤ 3ψ(m)+1(ψ(m) + 2)2(ψ(m)+2)

which is a contradiction because a straightforward calculation shows that the above
inequality cannot hold for m big enough.

The above theorem answers negatively Smale’s first question: does there exist a
polynomial p such that τ(n) ≤ p(log log(n))?

Smales’s question 2. Is τ(k!) ≤ p(log k) for some universal polynomial p?

Smale’s question 3. Does there exist a polynomial p such that for each k there
exists an m satisfying τ(m×k!) ≤ p(log k) ? In [SS], Shub and Smale proved that a
negative answer to this question implies that one cannot find an algorithm having
polynomial cost to decide whether a family of polynomials have a common zero,
and, by the results of [BSS], this implies that N 6= NP over the complex numbers.
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