Singular solutions for a class

of Grusin type operators

Authors:
Nicholas Hanges and A. Alexandrou Himonas

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1549-1557

MSC (1991):
Primary 35H05

MathSciNet review:
1307525

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct singular solutions for a one-parameter family of partial differential equations with double characteristics and with complex lower order terms. The parameter belongs to a discrete set which is described in terms of the spectrum of a related differential operator.

**1.**Louis Boutet de Monvel and François Trèves,*On a class of pseudodifferential operators with double characteristics*, Invent. Math.**24**(1974), 1–34. MR**0353064****2.**Antonio Gilioli,*A class of second-order evolution equations with double characteristics*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**3**(1976), no. 2, 187–229. MR**0437961****3.**Antonio Gilioli and François Trèves,*An example in the solvability theory of linear PDE’s*, Amer. J. Math.**96**(1974), 367–385. MR**0355285****4.**V. V. Grušin,*A certain class of hypoelliptic operators*, Mat. Sb. (N.S.)**83 (125)**(1970), 456–473 (Russian). MR**0279436****5.**Lars Hörmander,*A class of hypoelliptic pseudodifferential operators with double characteristics*, Math. Ann.**217**(1975), no. 2, 165–188. MR**0377603****6.**Lars Hörmander,*Hypoelliptic second order differential equations*, Acta Math.**119**(1967), 147–171. MR**0222474****7.**Lars Hörmander,*The analysis of linear partial differential operators. IV*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR**781537****8.**J. J. Kohn,*Pseudo-differential operators and hypoellipticity*, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 61–69. MR**0338592****9.**O. A. Oleĭnik and E. V. Radkevič,*Second order equations with nonnegative characteristic form*, Plenum Press, New York-London, 1973. Translated from the Russian by Paul C. Fife. MR**0457908****10.**Linda Preiss Rothschild and E. M. Stein,*Hypoelliptic differential operators and nilpotent groups*, Acta Math.**137**(1976), no. 3-4, 247–320. MR**0436223****11.**Gabor Szegö,*Orthogonal polynomials*, American Mathematical Society Colloquium Publications, Vol. 23. Revised ed, American Mathematical Society, Providence, R.I., 1959. MR**0106295**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
35H05

Retrieve articles in all journals with MSC (1991): 35H05

Additional Information

**Nicholas Hanges**

Affiliation:
Department of Mathematics, Herbert H. Lehman College-CUNY, Bronx, New York 10468-1589

Email:
nwhlc@cunyvm.cuny.edu

**A. Alexandrou Himonas**

Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

Email:
Alex.A.Himonas.1@nd.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-96-03180-2

Keywords:
Eigenvalue,
eigenfunction,
concatenations,
hypoellipticity,
double characteristics

Received by editor(s):
October 14, 1994

Received by editor(s) in revised form:
November 14, 1994

Additional Notes:
The first author was partially supported by NSF Grant DMS 91-04569.

The second author was partially supported by NSF Grant DMS 91-01161.

Communicated by:
Jeffrey Rauch

Article copyright:
© Copyright 1996
American Mathematical Society