A -dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients

Author:
Sam Huckaba

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1393-1401

MSC (1991):
Primary 13D40, 13A30, 13H10

DOI:
https://doi.org/10.1090/S0002-9939-96-03182-6

MathSciNet review:
1307529

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A -dimensional version is given of a -dimensional result due to C. Huneke. His result produced a formula relating the length to the difference , where is primary for the maximal ideal of a -dimensional Cohen-Macaulay local ring , is a minimal reduction of , , and is the Hilbert-Samuel polynomial of . We produce a formula that is valid for arbitrary dimension, and then use it to establish some formulas for the Hilbert coefficients of . We also include a characterization, in terms of the Hilbert coefficients of , of the condition .

**[BH]**W. Bruns and J. Herzog,*Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. CMP**94:05****[G]**A. Guerrieri,*On the depth of certain graded rings associated to an ideal*, Ph.D. Dissertation, Purdue University (1993).**[Hun]**C. Huneke,*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), 293--318. MR**89b:13037****[KM]**D. Kirby and H. A. Mehran,*A note on the coefficients of the Hilbert-Samuel polynomial for a Cohen-Macaulay module*, J. London Math. Soc. (2)**25**(1982), 449--457. MR**84a:13022****[K]**K. Kubota,*On the Hilbert-Samuel function*, Tokyo J. Math.**8**(1985), 439--448. MR**87f:13023a****[M1]**T. Marley,*Hilbert functions of ideals in Cohen-Macaulay local rings*, Ph.D. Dissertation, Purdue University (1989).**[M2]**T. Marley,*The coefficients of the Hilbert polynomial and the reduction number of an ideal*, J. London Math. Soc. (2)**40**(1989), 1--8. MR**90m:13026****[N]**M. Nagata,*Local Rings*, Kreiger, Huntington and New York, 1975. MR**57:301****[Na]**M. Narita,*A note on the coefficients of Hilbert characteristic functions in semi-regular local rings*, Proc. Cambridge Philos. Soc.**59**(1963), 269--275. MR**26:3734****[No]**D. G. Northcott,*A note on the coefficients of the abstract Hilbert function*, J. London Math. Soc.**35**(1960), 209--214. MR**22:1599****[NR]**D. G. Northcott and D. Rees,*Reductions of ideals in local rings*, Proc. Cambridge Philos. Soc.**50**(1954), 145--158. MR**15:596a****[O]**A. Ooishi,*-genera and sectional genera of commutative rings*, Hiroshima Math. J.**17**(1987), 361--372. MR**89f:13033****[S1]**J. D. Sally,*Hilbert coefficients and reduction number*, J. Algebraic Geom.**1**(1992), 325--333. MR**93b:13026****[S2]**J. D. Sally,*Ideals whose Hilbert function and Hilbert polynomial agree at*, J. Algebra**157**(1993), 534--547. MR**94d:13016****[Sw]**I. Swanson,*A note on analytic spread*, Comm. Algebra**22**(1994), 407--411. MR**95b:13007****[VV]**P. Valabrega and G. Valla,*Form rings and regular sequences*, Nagoya Math. J.**72**(1978), 93-101. MR**80d:14010****[V]**W. V. Vasconcelos,*Hilbert functions, analytic spread, and Koszul homology*, Contemporary Math.**159**(1994), 401--422. MR**95a:13006****[Wu]**Y. Wu,*Reduction numbers and Hilbert polynomials of ideals in higher dimensional*, Math. Proc. Cambridge Philos. Soc.

Cohen-Macaulay local rings**111**(1992), 47--56. MR**92g:13020****[ZS]**O. Zariski and P. Samuel,*Commutative Algebra, vol. 2*, Springer-Verlag, New York, 1960. MR**52:10706**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13D40,
13A30,
13H10

Retrieve articles in all journals with MSC (1991): 13D40, 13A30, 13H10

Additional Information

**Sam Huckaba**

Affiliation:
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-3027

Email:
huckaba@math.fsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03182-6

Keywords:
Hilbert-Samuel polynomial,
depth,
associated graded ring,
Cohen-Macaulay

Received by editor(s):
June 8, 1994

Received by editor(s) in revised form:
November 8, 1994

Additional Notes:
The author was partially supported by the NSA (#MDA904-92-H-3040).

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 1996
American Mathematical Society