Composition of Blochs with bounded analytic functions

Author:
E. G. Kwon

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1473-1480

MSC (1991):
Primary 30D55, 30D45

DOI:
https://doi.org/10.1090/S0002-9939-96-03191-7

MathSciNet review:
1307542

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a holomorphic self-map of the open unit disc and , then the following are equivalent. for all Bloch functions .

where is the hyperbolic derivative of : .

**[A]**Patrick R. Ahern,*On the behavior near torus of functions holomorphic in the ball*, Pacific J. Math.**107**(1983), 267--278. MR**84i:32023****[AR]**Patrick R. Ahern and Walter Rudin,*Bloch functions, BMO, and boundary zeros*, Indiana Univ. Math. J.**36**(1987), 131--148. MR**88d:42036****[D]**Peter. L. Duren,*The theory of functions*, Academic Press, New York, 1970. MR**42:3552****[G]**John. B. Garnett,*Bounded analytic functions*, Academic Press, New York, 1981. MR**83g:30037****[K1]**E. G. Kwon,*Fractional integration and the hyperbolic derivative*, Bull. Austral. Math. Soc.**38**(1988), 357--364. MR**90a:30096****[K2]**------,*Mean growth of the hyperbolic Hardy class functions*, Math. Japonica**35**(1990), 451--460. MR**91e:30064****[RU]**Wade Ramey and David Ullrich,*Bounded mean oscillations of Bloch pullbacks*, Math. Ann.**291**(1991), 591--606. MR**92i:32004****[Y1]**Shinji Yamashita,*Functions with hyperbolic derivative*, Math. Scand.**13**(1983), 238--244. MR**85f:30055****[Y2]**------,*Hyperbolic Hardy classes and hyperbolically Dirichlet finite functions*, Hokkaido Math. J.**10**(1981), 709--722, Special Issue.**[Y3]**------,*Holomorphic functions of hyperbolically bounded mean oscillations*, Bollentino U.M.I.**5-B**(6) (1986), 983--1000. MR**88e:30092****[Z]**A. Zygmund,*Trigonometric series*, Cambridge Univ. Press, London, 1959. MR**21:6498**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
30D55,
30D45

Retrieve articles in all journals with MSC (1991): 30D55, 30D45

Additional Information

**E. G. Kwon**

Affiliation:
Department of Mathematics-Education, Andong National University, Andong 760-749, Korea

Email:
egkwon@anu.andong.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-96-03191-7

Keywords:
$H^{p}$ space,
Bloch space,
hyperbolic Hardy class,
pullbacks

Received by editor(s):
January 31, 1994

Received by editor(s) in revised form:
October 19, 1994

Additional Notes:
This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1993.

Communicated by:
Theodore Gamelin

Article copyright:
© Copyright 1996
American Mathematical Society