Comparison of perturbed Dirac operators

Authors:
Jeffrey Fox and Peter Haskell

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1601-1608

MSC (1991):
Primary 58G10

MathSciNet review:
1317036

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper extends the index theory of perturbed Dirac operators to a collection of noncompact even-dimensional manifolds that includes both complete and incomplete examples. The index formulas are topological in nature. They can involve a compactly supported standard index form as well as a form associated with a Toeplitz pairing on a hypersurface.

**[A1]**Nicolae Anghel,*An abstract index theorem on noncompact Riemannian manifolds*, Houston J. Math.**19**(1993), no. 2, 223–237. MR**1225459****[A2]**N. Anghel,*𝐿²-index formulae for perturbed Dirac operators*, Comm. Math. Phys.**128**(1990), no. 1, 77–97. MR**1042444****[BiC]**Jean-Michel Bismut and Jeff Cheeger,*𝜂-invariants and their adiabatic limits*, J. Amer. Math. Soc.**2**(1989), no. 1, 33–70. MR**966608**, 10.1090/S0894-0347-1989-0966608-3**[B1]**Jochen Brüning,*𝐿²-index theorems on certain complete manifolds*, J. Differential Geom.**32**(1990), no. 2, 491–532. MR**1072916****[B2]**Jochen Brüning,*On 𝐿²-index theorems for complete manifolds of rank-one-type*, Duke Math. J.**66**(1992), no. 2, 257–309. MR**1162191**, 10.1215/S0012-7094-92-06608-7**[BM]**Jochen Brüning and Henri Moscovici,*𝐿²-index for certain Dirac-Schrödinger operators*, Duke Math. J.**66**(1992), no. 2, 311–336. MR**1162192**, 10.1215/S0012-7094-92-06609-9**[BS1]**Jochen Brüning and Robert Seeley,*An index theorem for first order regular singular operators*, Amer. J. Math.**110**(1988), no. 4, 659–714. MR**955293**, 10.2307/2374646**[BS2]**Jochen Brüning and Robert Seeley,*The resolvent expansion for second order regular singular operators*, J. Funct. Anal.**73**(1987), no. 2, 369–429. MR**899656**, 10.1016/0022-1236(87)90073-5**[Bu]**U. Bunke,*On constructions making Dirac operators invertible at infinity*, preprint, 1992.**[Ca]**Constantine Callias,*Axial anomalies and index theorems on open spaces*, Comm. Math. Phys.**62**(1978), no. 3, 213–234. MR**507780****[Cf]**Paul R. Chernoff,*Essential self-adjointness of powers of generators of hyperbolic equations*, J. Functional Analysis**12**(1973), 401–414. MR**0369890****[FH]**Jeffrey Fox and Peter Haskell,*Index theory for perturbed Dirac operators on manifolds with conical singularities*, Proc. Amer. Math. Soc.**123**(1995), no. 7, 2265–2273. MR**1243166**, 10.1090/S0002-9939-1995-1243166-4**[Ga]**C. Gajdzinski,*-index for perturbed Dirac operator on odd dimensional open complete manifold*, preprint, 1993.**[GLa]**Mikhael Gromov and H. Blaine Lawson Jr.,*Positive scalar curvature and the Dirac operator on complete Riemannian manifolds*, Inst. Hautes Études Sci. Publ. Math.**58**(1983), 83–196 (1984). MR**720933****[GuHi]**E. Guentner and N. Higson,*A note on Toeplitz operators*, preprint, 1993.**[L]**Matthias Lesch,*Deficiency indices for symmetric Dirac operators on manifolds with conic singularities*, Topology**32**(1993), no. 3, 611–623. MR**1231967**, 10.1016/0040-9383(93)90012-K**[R]**Johan Råde,*Callias’ index theorem, elliptic boundary conditions, and cutting and gluing*, Comm. Math. Phys.**161**(1994), no. 1, 51–61. MR**1266069**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58G10

Retrieve articles in all journals with MSC (1991): 58G10

Additional Information

**Jeffrey Fox**

Affiliation:
Mathematics Department, University of Colorado, Boulder, Colorado 80309

Email:
jfox@euclid.colorado.edu

**Peter Haskell**

Affiliation:
Mathematics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Email:
haskell@math.vt.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03263-7

Keywords:
Perturbed Dirac operator

Received by editor(s):
October 24, 1994

Additional Notes:
Jeffrey Fox’s work was supported by the National Science Foundation. \endgraf Peter Haskell’s work was supported by the National Science Foundation under Grant No. DMS-9204275.

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society