PRODUCTS OF ω^* IMAGES

M. BELL, L. SHAPIRO, AND P. SIMON

(Communicated by Franklin D. Tall)

Abstract. Let ω^* be the Čech-Stone remainder $\beta\omega \setminus \omega$. We show that there exists a large class O of images of ω^* such that whenever S is a subset of O of cardinality at most the continuum, then $\omega^* \times \prod S$ is again an image of ω^*. The class O contains all separable compact spaces, all compact spaces of weight at most ω_1 and all perfectly normal compact spaces.

1. Introduction

For a Tychonoff space X, βX represents the Čech-Stone compactification of X and for $A \subset X$, A^* represents the subspace $cl_{\beta X}(A) \setminus X$. If $f : X \to Y$, then $\beta f : \beta X \to \beta Y$ is the Čech-Stone extension of f and $f^* = \beta f \upharpoonright X^*$. The first infinite ordinal ω is given the discrete topology.

W. Just [Ju89] has proven that $\omega^* \times \omega^*$ is consistently not a continuous image of ω^*. So it is consistent that there are two ω^* images whose product is not an ω^* image. This creates a limit to naïve product results and a desire to find a general product result that includes many of the ω^* image results appearing in the literature. This is the theme of this paper. We will define a subclass O of the class of all ω^* images and show (The Product Theorem) that if S is a subset of O of cardinality at most the continuum, then $\omega^* \times \prod S$ is an ω^* image. In the succeeding sections, we will show that O contains all separable compact spaces, all compact spaces of weight at most ω_1, all perfectly normal compact spaces, all zero-dimensional, orderable ω^* images, and all ω^* images of weight $< b$.

In this paper all spaces are assumed to be Hausdorff and all mappings between spaces are assumed to be continuous surjections. If X is homeomorphic to Y, then this is denoted by $X \approx Y$. If F is a family of functions with a common domain X and ranges Y_f for $f \in F$, then ΔF represents the diagonal function with domain X and range $\prod_{f \in F} Y_f$ defined by $\Delta F(x) = (f(x))_{f \in F}$. A Boolean space is a zero-dimensional, compact space, and $CO(X)$ denotes the algebra of all clopen subsets of a space X. Thus, $CO(\omega^*)$ is isomorphic to the quotient algebra $\mathcal{P}(\omega)$ modulo the ideal of finite sets. The cardinality of the continuum is denoted by c. For an

Received by the editors October 20, 1994.

1991 Mathematics Subject Classification. Primary 54D30, 06E05; Secondary 54B10, 54D40.

Key words and phrases. ω^* image, product space, compact.

The first author gratefully acknowledges support from NSERC of Canada. The second author collaborated while visiting the University of Manitoba, Canada and also thanks the International Science Foundation for support. The third author gratefully acknowledges support by Charles University grant GAUK 350. We would like to thank A. Dow for helpful communications; in particular, for showing us his proof that $\omega_1 + 1$ is an orthogonal ω^* image.

©1996 American Mathematical Society
introduction to the theory of ω^* images we refer the reader to the article by van Mill [vM84].

2. Orthogonality and products

Definition 2.1. Two functions $f: X \to Y$ and $g: X \to Z$ are called orthogonal $(f \perp g)$ iff $f \triangle g: X \to Y \times Z$ is a surjection. If the sets are Boolean spaces and the functions are mappings, then the dual notion is as follows: If A and B are two subalgebras of a boolean algebra C, then A and B are called independent if for every non-zero $a \in A$ and for every non-zero $b \in B$, $a \land b \neq 0$.

Definition 2.2. X is an orthogonal ω^* image if there exists a finite-to-one surjection $q: \omega \to \omega$ and a mapping $f: \omega^* \to X$ with $f \perp q^*$. If X is a Boolean space, then the dual notion is as follows: A subalgebra B of $CO(\omega^*)$ is called an orthogonal subalgebra if there exists a partition $R = \{R_k : k < \omega\}$ of ω into finite sets such that for every non-empty $b \in B$, if $b = A^*$ where $A \subset \omega$, then \{ $k < \omega : A \cap R_k \neq \emptyset$ \} is a co-finite subset of ω.

Let us observe that a continuous image of an orthogonal ω^* image is again an orthogonal ω^* image.

In this paper, we will find it convenient to view ω in one of its alternate forms. Let $W = \{(k, j) \in \omega \times \omega : j \leq k\}$ be given the discrete topology (so $W^* \approx \omega^*$), let $p: W \to \omega$ be the projection $p(k, j) = k$, and for each $k < \omega$, let $W_k = p^{-1}(k)$. Let p be a finite-to-one surjection, we have that $p^*: W^* \to \omega^*$ is an open surjection. Thus we have

(\star) \forall open $V \subset W^*$ with $p^*(V) = \omega^*$ \exists clopen $V' \subset V$ with $p^*(V') = \omega^*$.

Henceforth W, W_k, W^*, p, and p^* will always have the above meanings. **They will be frequently used in this paper.** The following demonstrates the canonical nature of W.

Proposition 2.3. If X is an orthogonal ω^* image, then there exists a mapping $f: W^* \to X$ such that $f \perp p^*$.

Proof. Let q be a finite-to-one surjection $q: \omega \to \omega$ and let g be a mapping $g: \omega^* \to X$ such that $g \perp q^*$. Since $g \perp q^*$, for every $x \in X$ we have that $q^*(g^{-1}(x)) = \omega^*$. This means that for every $x \in X$ and for every $A \subset \omega$ such that $g^{-1}(x) \subset A^*$, $\{ n < \omega : A \cap q^{-1}(n) \neq \emptyset \}$ is a co-finite subset of ω. We will produce a finite-to-one surjection $\varphi: W \to \omega$ such that whenever $A \subset \omega$ satisfies that $\{ n < \omega : A \cap q^{-1}(n) \neq \emptyset \}$ is co-finite in ω, then $\{ n < \omega : \varphi^{-1}(A) \cap W_n \neq \emptyset \}$ is co-finite in ω. Putting $f = g \circ \varphi^*$, we see that $f \perp p^*$. To construct φ, first get an increasing function $\psi: \omega \to \omega$ such that for every $n < \omega$, $\psi(n) \geq |q^{-1}(n)|$. For every $i \leq 0$ let $\varphi_i: W_i \to \omega$ be arbitrary. For every $n \geq 0$ and for every i with $\psi(n) \leq i < \psi(n+1)$ let φ_i be a surjection from W_i onto $q^{-1}(n)$. Define $\varphi: W \to \omega$ so that for every $i < \omega$, $\varphi \mid W_i = \varphi_i$.\]

Proposition 2.4. The product of an ω^* image and an orthogonal ω^* image is an ω^* image.

Proof. This is an immediate consequence of the definition of orthogonal ω^* image.\]

It follows from Just’s result that ω^* need not be an orthogonal ω^* image.
Theorem 2.5 (The Product Theorem). The product of at most \(\epsilon \) many orthogonal \(\omega^* \) images is an orthogonal \(\omega^* \) image.

Proof. Invoking Proposition 2.3, for every \(s \in S \subset 2^\omega \) let \(f_s : W^* \to X_s \) satisfy \(f_s \perp p^* \). For every \(k < \omega \) let \(U_k = \{ t : t \) is a function with domain \(2^k \) and range \(W_k \} \). Let \(U = \bigcup_{k<\omega} U_k \) have the discrete topology (so \(U^* \approx \omega^* \)). If \(t \in U_k \)
then define \(r(t) = k \). As \(r : U \to \omega \) is a finite-to-one surjection, \(r^* : U^* \to \omega^* \)
is a surjection. For every \(s \in S \) define \(p_s : U \to W \) by \(p_s(t) = t(s \upharpoonright k) \) where \(t \in U_k \), i.e., \(p_s \upharpoonright U_k \) is the projection from \(U_k \) onto the factor indexed by \(s \upharpoonright k \). As \(p_s \) is a finite-to-one surjection, \(p^*_s : U^* \to \omega^* \)
is a surjection. We claim that \(r^* \perp \Delta \{ f_s \circ p^*_s : s \in S \} \). By compactness, it suffices to show that for any finite set \(T \subset S \), \(r^* \perp \Delta \{ f_s \circ p^*_s : s \in T \} \); for which, in turn, it suffices to show that for any collection of non-empty sets \(\{ V, V_s : s \in T \} \) where \(V \) is clopen in \(\omega^* \) and \(V_s \) is open in \(X_s \) for \(s \in T \), that \(r^* \perp \bigcap_{s \in T} (f_s \circ p^*_s)^{-1}(V_s) \neq \emptyset \). Let us check this. Since
\[
f_t \perp p^*, \text{ we have } p^*((f_t^{-1}(V_t))) = \omega^*. \text{ So by } (\star), \text{ we can choose clopen } V'_t \subset W^* \text{ with } V'_t \subset f_t^{-1}(V_t) \text{ and } p^*(V'_t) = \omega^*. \text{ We will prove that } r^* \perp \bigcap_{s \in T} (f_s \circ p^*_s)^{-1}(V_s) \neq \emptyset. \]
Let \(A \subset \omega \), \(A_s \subset W \) for \(s \in T \) be subsets with \(V = A^* \), \(V'_t = A^*_t \). \(A \) is infinite and \(p(A_s) \) is co-finite for every \(s \in T \) since \(p^*(A_s^*) = \omega^* \). So \(A \cap \bigcap_{s \in T} p(A_s) \) is infinite.
Let \(k \in A \cap \bigcap_{s \in T} p(A_s) \) be big enough to distinguish all members of \(T \), i.e., if \(s \neq s', s, s' \in T \), then \(s \upharpoonright k \neq s' \upharpoonright k \). For every such \(k \), there is a mapping \(t \in U_k \) such that for every \(s \in T \), \(t(s \upharpoonright k) \in A_s \). Since any \(t \) like this is in \(r^{-1}(A) \cap \bigcap_{s \in T} p_s^{-1}(A_s) \), the set \(r^{-1}(A) \cap \bigcap_{s \in T} p_s^{-1}(A_s) \) is infinite. So \(r^* \perp \bigcap_{s \in T} (f_s \circ p^*_s)^{-1}(V_s) \neq \emptyset. \)

We now strengthen a classical result.

Proposition 2.6. Every separable, compact space is an orthogonal \(\omega^* \) image.

Proof. It suffices to show that \(\beta \omega \) is an orthogonal \(\omega^* \) image. Let \(q : W \to \omega \) be the second projection \(q(k, j) = j \). As \(q \) is an infinite-to-one surjection, \(q^* : W^* \to \beta \omega \)
is a surjection. Since for every \(j < \omega \), \(\{ k < \omega : q^{-1}(j) \cap W_k \neq \emptyset \} \) is a co-finite subset of \(\omega \), we see that \(q^* \perp p^* \).

3. Weight \(\omega_1 \)

Definition 3.1. A thick clopen subset \(V \subset W^* \) is a clopen \(V \subset W^* \) with \(V = A^* \) where \(A \subset W \) satisfies \(\lim_{k \to \infty} |A \cap W_k| = \infty \). A thick zero set \(Z \subset W^* \) is a zero set \(Z \subset W^* \) with \(Z = \bigcap_{k<\omega} V_k \) where \(\{ V_k \} \) is a decreasing sequence of thick clopen subsets. If \(G \) is a clopen subset of \(W^* \), then a thick mapping \(f : G \to X \)
is a mapping \(f : G \to X \) with \(f^{-1}(x) \) a thick zero set for every \(x \in X \). We now list some basic properties of thick sets.

T1. If \(V \subset V' \) are clopen sets and \(V \) is thick, then \(V' \) is thick. If \(Z \subset Z' \) are zero sets and \(Z \) is thick, then \(Z' \) is thick.

T2. If \(\{ Z_k \} \) is a decreasing sequence of thick zero sets, then \(\bigcap_{k<\omega} Z_k \) is a thick zero set.
T3. A thick zeroset contains a thick clopen set.
 A thick clopen set contains two disjoint thick clopen sets.

T4. A thick mapping \(f : W^* \to X \) satisfies \(f \perp p^* \).

Let us prove the first part of T3. Let \(Z \subset W^* \) with \(Z = \bigcap_{j<\omega} V_j \) where \(\{V_j\} \) is a decreasing sequence of thick clopen sets. For \(j < \omega \) let \(A_j \subset W^* \) such that \(V_j = A_j^* \). Thus we have (a) \(j < k \) implies \(A_k \setminus A_j \) is finite and (b) for every \(j \), \(\lim_{k \to \infty} |A_j \cap W_k| = 0 \). By induction, using (a) and (b), define an increasing sequence \(\{r_n\} \subset \omega \) such that for every \(k \geq r_n \), \(A_n \cap W_k \subset \bigcap_{i<n} A_i \cap W_k \) and \(|A_n \cap W_k| \geq n \). For each \(n > 0 \) and for each \(i \) with \(r_n \leq i < r_{n+1} \) let \(F_i \) be a subset of \(A_n \cap W_i \) of cardinality \(n \). If \(F = \bigcup_{i<n} F_i \), then \(F^* \) is a thick clopen set with \(F^* \subset Z \).

We now give a topological proof of a strengthening of a result of Parovičenko [Pa63] using some ideas in Blaszczyk and Szymański [BS80].

Proposition 3.2. Let \(X \) be a compact metric space and let \(f : W^* \to X \) be a thick mapping. Let \(E \) and \(F \) be closed in \(X \) with \(X = E \cup F \). Then, there exists a clopen \(G \subset W^* \) such that \(f \restriction G \) is a thick mapping onto \(E \) and \(f \restriction (W^* \setminus G) \) is a thick mapping onto \(F \).

Proof. Let \(D \) be a countable, dense subset of \(E \cap F \). For every \(d \in D \) (by T3) choose disjoint, thick clopen subsets \(U_d \) and \(V_d \) of \(f^{-1}(d) \). Thus \(G_0 = f^{-1}(E \setminus F) \cup \bigcup_{d \in D} U_d \) and \(G_1 = f^{-1}(F \setminus E) \cup \bigcup_{d \in D} V_d \) are disjoint cozerosets of \(W^* \). Let \(G \) be clopen in \(W^* \) with \(G_0 \subset G \) and \(G_1 \subset (W^* \setminus G) \). Then \(f \restriction G \) is a mapping onto \(E \). Let \(x \in E \) and let \(Z \) be a zero-dimensional, compact metric space of weight at most \(\omega_1 \). Via an embedding into the Cantor cube \(2^{\omega_1} \), we may express \(X \) as an inverse limit space. Let \(X = \lim \{X_\alpha, p^{\alpha}_{\alpha}, \alpha < \beta < \omega_1 \} \) such that:

(i) \(X_\beta \) limit implies \(X_\beta = \lim \{X_\alpha, p^{\alpha}_{\alpha}, \alpha < \gamma < \beta \} \) (the spectrum is continuous).

(ii) \(X_\alpha \) is a zero-dimensional, compact metric space.

(iii) \(X_{\alpha+1} = X_\alpha^0 \cup X_\alpha^1 \) where \(X_0 \cup X_1 \) and \(X_0 \cup X_1 \) are disjoint, clopen subsets of \(X_0 \cup X_1 \) and for \(i = 0, 1 \), \(p^\alpha_{\alpha+1} \restriction X^i_{\alpha+1} \) is one-to-one (short projections are “simple”).

(iv) \(|X_0| = 1 \).

We will construct a system of thick mappings \(\{f_\alpha : W^* \to X_\alpha : \alpha < \omega_1 \} \) such that \(f_\alpha = p^\beta_\alpha \circ f_\beta \), \(\alpha < \beta < \omega_1 \). Since for every \(\alpha < \omega_1 \), \(f_\alpha \perp p^* \), by compactness we
will get that $f_{\omega_1} = \lim \{f_\alpha : \alpha < \omega_1\}$ satisfies $f_{\omega_1} \perp p^*$.

Limit Step. If β is a limit, then let $f_\beta = \lim \{f_\alpha : \alpha < \beta\}$. Property T2 implies that f_β is a thick mapping.

Successor Step. If $\beta = \alpha + 1$, then let $E = p^{\alpha+1}_\alpha(X^0_{\alpha+1})$ and $F = p^{\alpha+1}_\alpha(X^1_{\alpha+1})$. Apply Proposition 3.2 to get a clopen $G \subset W^*$ with $f_\alpha \restriction G$ a thick mapping onto E and $f_\alpha \restriction (W^* \setminus G)$ a thick mapping onto F. Define $f_{\alpha+1} : W^* \to X_{\alpha+1}$ by

$$f_{\alpha+1}(z) = \begin{cases} (p^{\alpha+1}_\alpha \restriction X^0_{\alpha+1})^{-1}(f_\alpha(z)) & \text{if } z \in G, \\ (p^{\alpha+1}_\alpha \restriction X^1_{\alpha+1})^{-1}(f_\alpha(z)) & \text{if } z \notin G. \end{cases}$$

$f_{\alpha+1}$ is a thick mapping because

$$f^{-1}_{\alpha+1}(x) = \begin{cases} (f_\alpha \restriction G)^{-1}(p^{\alpha+1}_\alpha(x)) & \text{if } x \in X^0_{\alpha+1}, \\ (f_\alpha \restriction (W^* \setminus G))^{-1}(p^{\alpha+1}_\alpha(x)) & \text{if } x \in X^1_{\alpha+1}, \end{cases}$$

and both $f_\alpha \restriction G$ and $f_\alpha \restriction (W^* \setminus G)$ are thick mappings. \square

4. Perfectly normal

Proposition 4.1. Let X, Y, \overline{V} and Z be compact spaces and let $f : X \to Y$, $g : X \to Z$, $h : \overline{Y} \to Y$, and $k : X \to \overline{Y}$ be mappings such that $f \perp g$, $f = h \circ k$, and h is irreducible. Then, $k \perp g$.

Proof. Let $y \in \overline{Y}$ and let O_y be a neighbourhood of y. Irreducibility of h implies that there exists a non-empty, open $V \subset Y$ with $h^{-1}(V) \subset O_y$. Therefore, $k^{-1}(h^{-1}(V)) = f^{-1}(V) \subset k^{-1}(O_y)$. But $g(f^{-1}(V)) = Z$ since $f \perp g$. So $g(k^{-1}(O_y)) = Z$. Thus $g(k^{-1}(y)) = Z$. \square

We now strengthen a result of Przymusiński [Pr82]. For the reader’s convenience, we sketch his arguments and indicate how we apply Proposition 4.1. The following Lifting Lemma appears in his paper.

Lemma 4.2. Let X be compact and perfectly normal, Z a closed subspace of $X \times I$ and suppose that the restriction $\pi \restriction Z : Z \to X$ of the projection $\pi : X \times I \to X$ is irreducible. If $f : \omega^* \to X$ is a continuous mapping of ω^* onto X, then there exists a continuous mapping $g : \omega^* \to Z$ of ω^* onto Z such that $f = \pi \circ g$.

Theorem 4.3. Every perfectly normal compact space X is an orthogonal ω^* image.

Proof. We express X as the limit space of an inverse spectrum

$$X = \lim \{X_\alpha, \pi^\alpha, \alpha < \beta < \kappa\}$$

with limit projections $\pi_\alpha : X \to X_\alpha$ such that:

(a) β limit implies $X_\beta = \lim \{X_\alpha, \pi^\alpha, \alpha < \gamma < \beta\}$
(b) $w(X_0) \leq \omega_1$
(c) π_0 is irreducible (therefore all other projections are irreducible)
(d) $X_{\alpha+1}$ is a closed subset of $X_\alpha \times I$ and $\pi^{\alpha+1}_\alpha$ is the restriction to $X_{\alpha+1}$ of the projection of $X_\alpha \times I$ onto X_α.

Parts (b) and (c) are achieved by using the result of Šapirovski [Sa74] that every perfectly normal compact space admits a π-base of cardinality at most ω_1. By Theorem 3.3, let $f_0 : W^* \to X_0$ satisfy $f_0 \perp p^*$. By induction on $\alpha \leq \kappa$, we construct $f_\alpha : W^* \to X_\alpha$ (where $X_\alpha = X$) such that $\beta < \alpha$ implies that $\pi_\beta \circ f_\alpha = f_\beta$. At successor stages use Lemma 4.2 to get $f_{\alpha+1}$ and at limit stages let $f_\kappa = \lim \{f_\beta : \beta < \alpha\}$. Thus we have $f_\kappa : W^* \to X$ with $f_0 = \pi_0 \circ f_\kappa$. Proposition 4.1 with $X = W^*$, $Y = X_0$, $\overline{Y} = X$, $Z = \omega^*$ and $f = f_0$, $g = p^*$, $h = \pi_0$, $k = f_\kappa$ implies that $f_\kappa \perp p^*$.

\section{Orderable}

\begin{theorem}
Every zero-dimensional, orderable ω^* image L is an orthogonal ω^* image.
\end{theorem}

\begin{proof}
Let \prec be a compatible order for L. Let $L' = \{x \in L : x$ is a left neighbour of a jump in $\prec\}$. Since L is Boolean, $G = \{\{y \in L : y \preceq x\} : x \in L'\}$ is a generating set for $CO(L)$. It suffices to define $\phi : L' \to \mathcal{P}(W)$ such that for every $x, y \in L'$, $x < y$ implies that (a) $\phi(x) \setminus \phi(y)$ is finite and $\phi(y) \setminus \phi(x)$ is infinite and (b) $\{k < \omega : (\phi(y) \setminus \phi(x)) \cap W_k \neq \emptyset\}$ is a co-finite subset of ω. Because then the function that sends $\{y \in L : y \preceq x\}$ to $\phi(x)^*$ will extend to an embedding of $CO(L)$ into $CO(W^*)$ (by (a)) onto an orthogonal subalgebra of $CO(W^*)$ (by (b)). Since L is an ω^* image, let $\psi : L' \to \mathcal{P}(\omega)$ satisfy that for every $x, y \in L'$, $x < y$ iff $\psi(x) \setminus \psi(y)$ is finite. Finally, define $\phi : L' \to \mathcal{P}(W)$ by $\phi(x) = \{(k, j) : j \leq \psi(x) \cap k\}$.
\end{proof}

Let Q denote the lexicographic ordered space 2^{ω_1}. It is known (Bell [Be90]) that Q is an ω^* image, so we get the following corollary.

\begin{corollary}
Q is an orthogonal ω^* image.
\end{corollary}

\begin{example}
The Alexandroff one-point compactification of the discrete space ε is an orthogonal ω^* image because it is an image of Q.
\end{example}

\begin{corollary}
Every first countable orderable compact space is an orthogonal ω^* image.
\end{corollary}

\begin{proof}
This follows because Maurice [Ma64] has proved that every first countable orderable compact space is an image of Q.
\end{proof}

\begin{question}
Can zero-dimensionality be removed from the hypotheses of Theorem 5.1, i.e., is every orderable ω^* image an orthogonal ω^* image?
\end{question}

\section{Weight $< b$}

Recall that if $f, g \in \omega^\omega$, then $f \prec g$ means that eventually $f(k) < g(k)$ and that b is by definition the least cardinality of an \prec-unbounded subset of ω^ω.

\begin{theorem}
Every ω^* image X of weight $< b$ is an orthogonal ω^* image.
\end{theorem}

\begin{proof}
It suffices to assume that X is Boolean. Let B be a subalgebra of $CO(\omega^*)$ of cardinality $< b$. For every $b \in B$, choose $M_b \subset \omega$ such that $b = M_b^\omega$. For every $b \in B$, define $f_b \in \omega^\omega$ by $f_b(k) = \min\{n \in M_b : n \geq k\}$. Let $g \in \omega^\omega$ such that for every $b \in B$, $f_b < g$ and for every $k < \omega$, $k < g(k)$. Let $R = \{(k, j) : k < j < g(k)\}$ endowed with the discrete topology (therefore $R^* \approx \omega^*$), let for every $k < \omega$, $R_k = \{(k, j) : k \leq j < g(k)\}$, and let $R = \{R_k : k < \omega\}$. For every $b \in B$, define $A_b = \{(k, j) \in R : j \in M_b\}$. Then, $C = \{A_b^* : b \in B\}$ is a subalgebra of $CO(R^*)$,
$B \cong C$ by the natural map $b \mapsto A^*_b$, and C is an orthogonal subalgebra of $CO(R^*)$ because for every $b \neq \emptyset$, $\{k < \omega : A_k \cap R_k \neq \emptyset\}$ is co-finite in ω. \hfill \Box

A family \mathcal{A} of subsets of ω is said to be strongly centered if whenever \mathcal{F} is a finite subset of \mathcal{A}, then $\bigcap \mathcal{F}$ is infinite. Recall that p is the least cardinality of a strongly centered family \mathcal{A} such that there does not exist an infinite $X \subseteq \omega$ with the property that for every $A \in \mathcal{A}$, $X \setminus A$ is finite. It is a basic fact that $\omega_1 \leq p \leq c$.

We now strengthen the result of van Douwen and Przymusiński [DP80] that every compact space of weight $< p$ is an ω^* image.

Corollary 6.2. Every compact space X of weight $< p$ is an orthogonal ω^* image.

Proof. Since X is an ω^* image and $p \leq \mathfrak{b}$ (cf. van Douwen [vD84]), we can apply Theorem 6.1. \hfill \Box

It follows from this corollary that Martin’s Axiom implies that all compact spaces of weight less than \mathfrak{c} are orthogonal ω^* images.

In conclusion, we summarize our results relating to well-known classes of spaces.

Summation 6.3. Let \mathcal{D} be the class of all compact spaces which have at least one of the following properties: separable, weight at most ω_1, perfectly normal, first countable orderable, and weight $< p$. If \mathcal{S} is a subset of \mathcal{D} of cardinality at most \mathfrak{c}, then $\omega^* \times \prod \mathcal{S}$ is an image of ω^*.

References

[Be90] M.Bell, A first countable compact space that is not an N^* image, Topology and its Applications 35 (1990), 153-156. MR 91m:54028

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MANITOBA, FORT GARRY CAMPUS, WINNIPEG, CANADA R3T 2N2

E-mail address: mbell@cc.umanitoba.ca

DEPARTMENT OF MATHEMATICS, ACADEMY OF LABOR AND SOCIAL RELATIONS, LOBACHEVSKOGO 90, MOSCOW, RUSSIA 117454

E-mail address: lshapiro@glas.apc.org

MATHEMATICKÝ ÚSTAV, UNIVERSITY KARLOVY, SOKOLOVSKÁ 83, 18600 PRAHA 8, CZECH REPUBLIC

E-mail address: psimon@mff.cuni.cz

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use