A result on derivations
Authors:
TsiuKwen Lee and JerShyong Lin
Journal:
Proc. Amer. Math. Soc. 124 (1996), 16871691
MSC (1991):
Primary 16W25
MathSciNet review:
1307545
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a semiprime ring with a derivation and let be a Lie ideal of , . Suppose that for all , where is a fixed positive integer. Then for the ideal of generated by and if is 2torsion free, then . Furthermore, is a subdirect sum of semiprime homomorphic images and with derivations and , induced canonically by , respectively such that and the image of in is commutative (central if is 2torsion free), where denotes the image of in . Moreover, if , then . This gives Bre[??]sar's theorem without the torsion free assumption on .
 1.
Matej
Brešar, A note on derivations, Math. J. Okayama Univ.
32 (1990), 83–88. MR 1112014
(92g:16026)
 2.
L.
Carini and A.
Giambruno, Lie ideals and nil derivations, Boll. Un. Mat.
Ital. A (6) 4 (1985), no. 3, 497–503 (English,
with Italian summary). MR 821089
(87d:16045)
 3.
ChenLian
Chuang, GPIs having coefficients in Utumi
quotient rings, Proc. Amer. Math. Soc.
103 (1988), no. 3,
723–728. MR
947646 (89e:16028), http://dx.doi.org/10.1090/S00029939198809476464
 4.
Theodore
S. Erickson, Wallace
S. Martindale 3rd, and J.
Marshall Osborn, Prime nonassociative algebras, Pacific J.
Math. 60 (1975), no. 1, 49–63. MR 0382379
(52 #3264)
 5.
B.
Felzenszwalb and Charles
Lanski, On the centralizers of ideals and nil derivations, J.
Algebra 83 (1983), no. 2, 520–530. MR 714263
(84m:16028), http://dx.doi.org/10.1016/00218693(83)902375
 6.
A.
Giambruno and I.
N. Herstein, Derivations with nilpotent values, Rend. Circ.
Mat. Palermo (2) 30 (1981), no. 2, 199–206. MR 651152
(83g:16010), http://dx.doi.org/10.1007/BF02844306
 7.
I.
N. Herstein, Topics in ring theory, The University of Chicago
Press, Chicago, Ill.London, 1969. MR 0271135
(42 #6018)
 8.
I.
N. Herstein, Centerlike elements in prime rings, J. Algebra
60 (1979), no. 2, 567–574. MR 549949
(80m:16006), http://dx.doi.org/10.1016/00218693(79)901029
 9.
V.
K. Harčenko, Differential identities of semiprime
rings, Algebra i Logika 18 (1979), no. 1,
86–119, 123 (Russian). MR 566776
(81f:16052)
 10.
Charles
Lanski and Susan
Montgomery, Lie structure of prime rings of characteristic 2,
Pacific J. Math. 42 (1972), 117–136. MR 0323839
(48 #2194)
 11.
Charles
Lanski, Derivations with nilpotent values on
Lie ideals, Proc. Amer. Math. Soc.
108 (1990), no. 1,
31–37. MR
984803 (90d:16041), http://dx.doi.org/10.1090/S00029939199009848034
 12.
Wallace
S. Martindale III, Prime rings satisfying a generalized polynomial
identity, J. Algebra 12 (1969), 576–584. MR 0238897
(39 #257)
 1.
 M. Bresar, A note on derivations, Math. J. Okayama Univ. 32 (1990), 8388. MR 92g:16026
 2.
 L. Carini and A. Giambruno, Lie ideals and nil derivations, Boll. Un. Mat. Ital. 6 (1985), 497503. MR 87d:16045
 3.
 C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723728. MR 89e:16028
 4.
 J. S. Erickson, W. S. Martindale 3rd, and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), 4963. MR 52:3264
 5.
 B. Felzenszwalb and C. Lanski, On the centralizers of ideals and nil derivations, J. Algebra 83 (1983), 520530. MR 84m:16028
 6.
 A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo 30 (1981), 199206. MR 83g:16010
 7.
 I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, IL, 1969. MR 42:6018
 8.
 , Centerlike elements in prime rings, J. Algebra 60 (1979), 567574. MR 80m:16006
 9.
 V. K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic 18 (1979), 5880. MR 81f:16052
 10.
 C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic , Pacific J. Math. 42 (1972), 117136. MR 48:2194
 11.
 C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc. 108 (1990), 3137. MR 90d:16041
 12.
 W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576584. MR 39:257
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
16W25
Retrieve articles in all journals
with MSC (1991):
16W25
Additional Information
TsiuKwen Lee
Affiliation:
Department of Mathematics, National Taiwan University, Taipei, Taiwan 10764, Republic of China
Email:
tklee@math.ntu.edu.tw
JerShyong Lin
Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
Email:
jslin@math.nthu.edu.tw
DOI:
http://dx.doi.org/10.1090/S0002993996032340
PII:
S 00029939(96)032340
Keywords:
Semiprime rings,
derivations,
Lie ideals,
GPIs,
differential identities
Received by editor(s):
March 28, 1994
Received by editor(s) in revised form:
May 9, 1994, and December 9, 1994
Communicated by:
Ken Goodearl
Article copyright:
© Copyright 1996
American Mathematical Society
