The range of a ring homomorphism

from a commutative -algebra

Author:
Lajos Molnár

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1789-1794

MSC (1991):
Primary 46J05, 46E25

DOI:
https://doi.org/10.1090/S0002-9939-96-03236-4

MathSciNet review:
1307551

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if a commutative semi-simple Banach algebra is the range of a ring homomorphism from a commutative -algebra, then is -equivalent, i.e. there are a commutative -algebra and a bicontinuous algebra isomorphism between and . In particular, it is shown that the group algebras , and the disc algebra are not ring homomorphic images of -algebras.

**[Bur]**R. B. Burckel,*Characterizations of 𝐶(𝑋) among its subalgebras*, Marcel Dekker, Inc., New York, 1972. Lecture Notes in Pure and Applied Mathematics, Vol. 6. MR**0442687****[Cro]**R. W. Cross,*On the continuous linear image of a Banach space*, J. Austral. Math. Soc. Ser. A**29**(1980), no. 2, 219–234. MR**566287****[Cun]**Joachim Cuntz,*Locally 𝐶*-equivalent algebras*, J. Functional Analysis**23**(1976), no. 2, 95–106. MR**0448088****[FD]**J. M. G. Fell and R. S. Doran,*Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles. Vol. 1*, Pure and Applied Mathematics, vol. 125, Academic Press, Inc., Boston, MA, 1988. Basic representation theory of groups and algebras. MR**936628****[FW]**P. A. Fillmore and J. P. Williams,*On operator ranges*, Advances in Math.**7**(1971), 254–281. MR**0293441**, https://doi.org/10.1016/S0001-8708(71)80006-3**[Kuc]**Marek Kuczma,*An introduction to the theory of functional equations and inequalities*, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR**788497****[Mol]**L. Molnár,*Algebraic difference between -classes of an -algebra*, Proc. Amer. Math. Soc. (to appear). CMP**94:17****[Pal]**Theodore W. Palmer,*Banach algebras and the general theory of *-algebras. Vol. I*, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR**1270014****[Rud]**W. Rudin,*Real and Complex Analysis*, Tata McGraw-Hill Publishing Co. Ltd., New Delhi, 1983.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46J05,
46E25

Retrieve articles in all journals with MSC (1991): 46J05, 46E25

Additional Information

**Lajos Molnár**

Affiliation:
Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P.O.Box 12, Hungary

Email:
molnarl@math.klte.hu

DOI:
https://doi.org/10.1090/S0002-9939-96-03236-4

Keywords:
Ring homomorphism,
commutative Banach algebra,
Gelfand representation

Received by editor(s):
November 21, 1994

Additional Notes:
Research partially supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA 1652 and K&H Bank Ltd., Universitas Foundation.

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society