The Zariski problem for function fields of quadratic forms

Author:
Jack Ohm

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1679-1685

MSC (1991):
Primary 11E04, 11E81, 12F20

MathSciNet review:
1307553

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By `a quadratic function field' is meant the affine function field of a nonsingular quadratic form of dimension . What quadratic function fields contain a given quadratic function field ? This problem is solved here for quadratic forms of dimensions 3 and 4, and an application to the Zariski cancellation problem for quadratic function fields is given.

**[AO]**H. Ahmad and J. Ohm,*Function fields of Pfister neighbors*, J. Algebra**178**(1995), 653--664.**[B]**Arnaud Beauville, Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Peter Swinnerton-Dyer,*Variétés stablement rationnelles non rationnelles*, Ann. of Math. (2)**121**(1985), no. 2, 283–318 (French). MR**786350**, 10.2307/1971174**[H1]**D. Hoffmann,*Isotropy of 5-dimensional Quadratic forms over the function field of a quadric*, preprint.**[H2]**------,*On 6-dimensional quadratic forms isotropic over the function field of a quadric*, Comm. in Algebra**22(6)**(1994), 1999-2014. CMP**94:10****[H3]**------,*Minimal quadratic forms and function fields of quadratic forms*, preprint.**[K]**Manfred Knebusch,*Generic splitting of quadratic forms. II*, Proc. London Math. Soc. (3)**34**(1977), no. 1, 1–31. MR**0427345****[L]**T. Y. Lam,*The algebraic theory of quadratic forms*, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1980. Revised second printing; Mathematics Lecture Note Series. MR**634798****[L2]**------,*Fields of u-invariant 6 after A. Merkurjev*, Isarel Math. Conf. Proc., Ring Theory 1989 (in honor of S.A. Amitsur) (L. Rowen, ed.), vol. I, Weizmann Science Press, Jerusalem, 1989, pp. 12--31.**[O1]**Jack Ohm,*On subfields of rational function fields*, Arch. Math. (Basel)**42**(1984), no. 2, 136–138. MR**751484**, 10.1007/BF01772932**[O2]**Jack Ohm,*On ruled fields*, Sém. Théor. Nombres Bordeaux (2)**1**(1989), no. 1, 27–49 (English, with French summary). MR**1050263****[O3]**Jack Ohm,*Function fields of conics, a theorem of Amitsur-MacRae, and a problem of Zariski*, Algebraic geometry and its applications (West Lafayette, IN, 1990), Springer, New York, 1994, pp. 333–363. MR**1272040****[W]**Adrian R. Wadsworth,*Similarity of quadratic forms and isomorphism of their function fields*, Trans. Amer. Math. Soc.**208**(1975), 352–358. MR**0376527**, 10.1090/S0002-9947-1975-0376527-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11E04,
11E81,
12F20

Retrieve articles in all journals with MSC (1991): 11E04, 11E81, 12F20

Additional Information

**Jack Ohm**

Affiliation:
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Email:
mmohm@lsuvax.sncc.lsu.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03238-8

Keywords:
Quadratic form,
function field,
Zariski problem

Received by editor(s):
February 14, 1994

Received by editor(s) in revised form:
December 9, 1994

Communicated by:
Lance W. Small

Article copyright:
© Copyright 1996
American Mathematical Society