Lipschitz distributions and Anosov flows
Author:
Slobodan Simic
Journal:
Proc. Amer. Math. Soc. 124 (1996), 18691877
MSC (1991):
Primary 34C35, 58A30; Secondary 53C12
MathSciNet review:
1328378
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class . As a consequence, we show that every codimensionone Anosov flow on a compact manifold of dimension such that the sum of its strong distributions is Lipschitz, admits a global cross section.
 [An]
D.
V. Anosov, Geodesic flows on closed Riemann manifolds with negative
curvature., Proceedings of the Steklov Institute of Mathematics, No.
90 (1967). Translated from the Russian by S. Feder, American Mathematical
Society, Providence, R.I., 1969. MR 0242194
(39 #3527)
 [EG]
Lawrence
C. Evans and Ronald
F. Gariepy, Measure theory and fine properties of functions,
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
(93f:28001)
 [Fr]
John
Franks, Anosov diffeomorphisms, Global Analysis (Proc. Sympos.
Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc.,
Providence, R.I., 1970, pp. 61–93. MR 0271990
(42 #6871)
 [Gh]
E. Ghys: Codimension one Anosov flows and suspensions, Lecture Notes in Math., vol. 1331 (1989), pp.5972, SpringerVerlag
 [Ha]
Philip
Hartman, Ordinary differential equations, S. M. Hartman,
Baltimore, Md., 1973. Corrected reprint. MR 0344555
(49 #9294)
 [Hi]
Einar
Hille, Lectures on ordinary differential equations,
AddisonWesley Publ. Co., Reading, Mass.LondonDon Mills, Ont., 1969. MR 0249698
(40 #2939)
 [HP]
Morris
W. Hirsch and Charles
C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis
(Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math.
Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
(42 #6872)
 [Nh]
S.
E. Newhouse, On codimension one Anosov diffeomorphisms, Amer.
J. Math. 92 (1970), 761–770. MR 0277004
(43 #2741)
 [Pl]
Joseph
F. Plante, Anosov flows, Amer. J. Math. 94
(1972), 729–754. MR 0377930
(51 #14099)
 [Ve]
Alberto
Verjovsky, Codimension one Anosov flows, Bol. Soc. Mat.
Mexicana (2) 19 (1974), no. 2, 49–77. MR 0431281
(55 #4282)
 [Wa]
Frank
W. Warner, Foundations of differentiable manifolds and Lie
groups, Graduate Texts in Mathematics, vol. 94, SpringerVerlag,
New YorkBerlin, 1983. Corrected reprint of the 1971 edition. MR 722297
(84k:58001)
 [Wh]
Hassler
Whitney, Geometric integration theory, Princeton University
Press, Princeton, N. J., 1957. MR 0087148
(19,309c)
 [Zi]
William
P. Ziemer, Weakly differentiable functions, Graduate Texts in
Mathematics, vol. 120, SpringerVerlag, New York, 1989. Sobolev spaces
and functions of bounded variation. MR 1014685
(91e:46046)
 [An]
 D.V. Anosov: Geodesic flows on closed Riemannian manifolds with negative curvature, Proceedings of the Steklov Math. Inst., no. 90 (1967), AMS Translations (1969) MR 39:3527
 [EG]
 L.C. Evans and R.F. Gariepy: Measure theory and fine properties of functions, Studies in Advanced Math., CRC Press, Boca Raton, 1992 MR 93f:28001
 [Fr]
 J. Franks: Anosov diffeomorphisms, Proc. Symp. in Pure Math., vol. XIV (1970), AMS MR 42:6871
 [Gh]
 E. Ghys: Codimension one Anosov flows and suspensions, Lecture Notes in Math., vol. 1331 (1989), pp.5972, SpringerVerlag
 [Ha]
 P. Hartman: Ordinary differential equations, Baltimore, 1973 MR 49:9294
 [Hi]
 E. Hille: Lectures on ordinary differential equations, AddisonWesley, Reading, MA, 1969 MR 40:2939
 [HP]
 M.W. Hirsch, C.C. Pugh: Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math., vol. 14 (1970), pp.133163, AMS, Providence MR 42:6872
 [Nh]
 S. Newhouse: On codimension one Anosov diffeomorphisms, American J. of Math., vol. 92 (1970), pp.761770 MR 43:2741
 [Pl]
 J.F. Plante: Anosov flows, American J. of Math., vol. 94 (1972), pp.729754 MR 51:14099
 [Ve]
 A. Verjovsky: Codimension one Anosov flows, Boletin de la Sociedad Matematica Mexicana (2) 19 (1974), no.2, pp.4977 MR 55:4282
 [Wa]
 F.W. Warner: Foundations of differentiable manifolds and Lie groups, GTM 94, SpringerVerlag, New York 1983 MR 84k:58001
 [Wh]
 H. Whitney: Geometric integration theory, Princeton University Press, Princeton, 1957 MR 19:309c
 [Zi]
 W.P. Ziemer: Weakly differentiable functions, GTM 120, SpringerVerlag, New York 1989 MR 91e:46046
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
34C35,
58A30,
53C12
Retrieve articles in all journals
with MSC (1991):
34C35,
58A30,
53C12
Additional Information
Slobodan Simic
Affiliation:
Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
Address at time of publication:
Department of Mathematics (M/C 249), University of Illinois of Chicago, 851 S. Morgan Street, Chicago, Illinois 606077045
Email:
simic@math.uic.edu
DOI:
http://dx.doi.org/10.1090/S0002993996034235
PII:
S 00029939(96)034235
Keywords:
Distribution,
foliation,
Anosov flow,
cross section
Received by editor(s):
December 15, 1994
Additional Notes:
Part of this research was supported by the University of California Graduate Fellowship
Communicated by:
Linda Keen
Article copyright:
© Copyright 1996
American Mathematical Society
