Bounded harmonic maps on a class of manifolds

Authors:
Chiung-Jue Sung, Luen-fai Tam and Jiaping Wang

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2241-2248

MSC (1991):
Primary 58E20

MathSciNet review:
1307567

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Without imposing any curvature assumptions, we show that bounded harmonic maps with image contained in a regular geodesic ball share similar behaviour at infinity with the bounded harmonic functions on the domain manifold.

**[A-C-M]**Patricio Aviles, H. Choi, and Mario Micallef,*Boundary behavior of harmonic maps on nonsmooth domains and complete negatively curved manifolds*, J. Funct. Anal.**99**(1991), no. 2, 293–331. MR**1121616**, 10.1016/0022-1236(91)90043-5**[Cai]**Mingliang Cai,*Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set*, Bull. Amer. Math. Soc. (N.S.)**24**(1991), no. 2, 371–377. MR**1071028**, 10.1090/S0273-0979-1991-16038-6**[C-G 2]**Jeff Cheeger and Detlef Gromoll,*On the structure of complete manifolds of nonnegative curvature*, Ann. of Math. (2)**96**(1972), 413–443. MR**0309010****[Cg]**Shiu Yuen Cheng,*Liouville theorem for harmonic maps*, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 147–151. MR**573431****[C-Y]**S. Y. Cheng and S. T. Yau,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), no. 3, 333–354. MR**0385749****[Ch]**Hyeong In Choi,*On the Liouville theorem for harmonic maps*, Proc. Amer. Math. Soc.**85**(1982), no. 1, 91–94. MR**647905**, 10.1090/S0002-9939-1982-0647905-3**[Go]**William B. Gordon,*Convex functions and harmonic maps*, Proc. Amer. Math. Soc.**33**(1972), 433–437. MR**0291987**, 10.1090/S0002-9939-1972-0291987-1**[G-W]**R. E. Green and H. Wu,*Function theory on Manifolds which possess a pole*, Lecture Notes in Math. 699 (1979).**[H-K-W]**Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman,*An existence theorem for harmonic mappings of Riemannian manifolds*, Acta Math.**138**(1977), no. 1-2, 1–16. MR**0433502****[J-K]**Willi Jäger and Helmut Kaul,*Uniqueness and stability of harmonic maps and their Jacobi fields*, Manuscripta Math.**28**(1979), no. 1-3, 269–291. MR**535705**, 10.1007/BF01647975**[K 1]**Atsushi Kasue,*A compactification of a manifold with asymptotically nonnegative curvature*, Ann. Sci. École Norm. Sup. (4)**21**(1988), no. 4, 593–622. MR**982335****[K 2]**Atsushi Kasue,*Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature. I*, Geometry and analysis on manifolds (Katata/Kyoto, 1987) Lecture Notes in Math., vol. 1339, Springer, Berlin, 1988, pp. 158–181. MR**961480**, 10.1007/BFb0083054**[Ke]**Wilfrid S. Kendall,*Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence*, Proc. London Math. Soc. (3)**61**(1990), no. 2, 371–406. MR**1063050**, 10.1112/plms/s3-61.2.371**[L-T 1]**Peter Li and Luen-Fai Tam,*Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set*, Ann. of Math. (2)**125**(1987), no. 1, 171–207. MR**873381**, 10.2307/1971292**[L-T 2]**Peter Li and Luen-Fai Tam,*Symmetric Green’s functions on complete manifolds*, Amer. J. Math.**109**(1987), no. 6, 1129–1154. MR**919006**, 10.2307/2374588**[L-T 3]**Peter Li and Luen-Fai Tam,*Complete surfaces with finite total curvature*, J. Differential Geom.**33**(1991), no. 1, 139–168. MR**1085138****[L-T 4]**Peter Li and Luen-Fai Tam,*Harmonic functions and the structure of complete manifolds*, J. Differential Geom.**35**(1992), no. 2, 359–383. MR**1158340****[L-T 5]**P. Li and L. F. Tam,*Green's Functions, Harmonic Functions and Volume Comparison*, J. Diff. Geom., vol. 41, 1995, pp. 277--318.**[Liu]**Z-D. Liu,*Ball covering on manifolds with nonnegative Ricci curvature near infinity*, preprint.**[S]**C. J. Sung,*Harmonic functions under quasi-isometry*, to appear in J. Geom. Anal..**[Y]**Shing Tung Yau,*Harmonic functions on complete Riemannian manifolds*, Comm. Pure Appl. Math.**28**(1975), 201–228. MR**0431040**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58E20

Retrieve articles in all journals with MSC (1991): 58E20

Additional Information

**Chiung-Jue Sung**

Affiliation:
Department of Mathematics, National Chung Cheng University, Chia-Yi, Taiwan 62117

Email:
cjsung@math.ccu.edu.tw

**Luen-fai Tam**

Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Email:
lftam@math.cuhk.hk

**Jiaping Wang**

Affiliation:
Department of Mathematics, Stanford University, Stanford, California 94305

Email:
jwang@math.stanford.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-96-03246-7

Received by editor(s):
December 16, 1994

Additional Notes:
The first author was partially supported by NSC grant# 830208M194030.

The second author was partially supported by NSF grant #DMS9300422 .

Communicated by:
Peter Li

Article copyright:
© Copyright 1996
American Mathematical Society