Bounded harmonic maps on a class of manifolds

Authors:
Chiung-Jue Sung, Luen-fai Tam and Jiaping Wang

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2241-2248

MSC (1991):
Primary 58E20

DOI:
https://doi.org/10.1090/S0002-9939-96-03246-7

MathSciNet review:
1307567

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Without imposing any curvature assumptions, we show that bounded harmonic maps with image contained in a regular geodesic ball share similar behaviour at infinity with the bounded harmonic functions on the domain manifold.

**[A-C-M]**P. Avilés, H.I. Choi, and M. Micallef,*Boundary behavior of harmonic maps on non-smooth domains and complete negatively curved manifolds*, J. Functional Anal.**99**(1991), 293--331. MR**92j:58025****[Cai]**M. Cai,*Ends of Riemannian manifolds with nonnegative Ricci curvature outside a compact set*, Bull. AMS**24**(1991), 371--377. MR**92f:53045****[C-G 2]**J. Cheeger and D. Gromoll,*On the structure of complete manifolds of nonnegative curvature*, Ann. of Math.**92**(1972), 413--443. MR**46:8121****[Cg]**S. Y. Cheng,*Liouville Theorem for Harmonic Maps*, Proc. of Symposia in Pure Math.**36**(1980), 147--151. MR**81i:58021****[C-Y]**S. Y. Cheng and S. T. Yau,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), 333--354. MR**52:6608****[Ch]**H. I. Choi,,*On the Liouville theorem for harmonic maps*, Proc. AMS**85**(1982), 91--94. MR**83j:53073****[Go]**W. B. Gordon,*Convex functions and harmonic maps*, Proc. AMS**33**(1972), 433--437. MR**45:1075****[G-W]**R. E. Green and H. Wu,*Function theory on Manifolds which possess a pole*, Lecture Notes in Math. 699 (1979).**[H-K-W]**S. Hildebrandt, H. Kaul and K. -O. Widman,*An existence theory for harmonic mappings of Riemannian manifolds*, Acta Math.**138**(1977), 1--16. MR**55:6478****[J-K]**Jäger, W. and Kaul, H.,*Uniqueness and stability of harmonic maps and their Jocobi fields*, Manu. Math.**28**(1979), 269--291. MR**80j:58030****[K 1]**A. Kasue,*A compactification of a manifold with asymptotically nonnegative curvature*, Ann. Scient. Ec. Norm. Sup.**21**(1988), 593--622. MR**90d:53049****[K 2]**A. Kasue,*Harmonic functions with growth conditions on a manifold of asymptotically nonnegative curvature I*, Geometry and Analysis on Manifolds, Springer-Verlag Lecture Notes in Mathematics 1339, 1988, pp. 158--181. MR**89i:53030****[Ke]**W. S. Kendall,,*Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence*, Proc. London Math. Soc.**61 (3)**(1990), 371--406. MR**91g:58062****[L-T 1]**P. Li and L. F. Tam,*Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set.*, Annals Math.**125**(1987), 171--207. MR**88m:58039****[L-T 2]**P. Li and L. F. Tam,*Symmetric Green's functions on complete manifolds*, Amer. J. Math.**109**(1987), 1129--1154. MR**89f:58129****[L-T 3]**P. Li and L. F. Tam,*Complete surfaces with finite total curvature*, J. Diff. Geom.**33**(1991), 139--168. MR**92e:53051****[L-T 4]**P. Li and L. F. Tam,*Harmonic functions and the structure of complete manifolds*, J. Diff. Geom.**35**(1992), 359--383. MR**93b:53033****[L-T 5]**P. Li and L. F. Tam,*Green's Functions, Harmonic Functions and Volume Comparison*, J. Diff. Geom., vol. 41, 1995, pp. 277--318.**[Liu]**Z-D. Liu,*Ball covering on manifolds with nonnegative Ricci curvature near infinity*, preprint.**[S]**C. J. Sung,*Harmonic functions under quasi-isometry*, to appear in J. Geom. Anal..**[Y]**S. T. Yau,*Harmonic functions on complete Riemannian manifolds*, Comm. Pure Appl. Math.**28**(1975), 201--228. MR**55:4042**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58E20

Retrieve articles in all journals with MSC (1991): 58E20

Additional Information

**Chiung-Jue Sung**

Affiliation:
Department of Mathematics, National Chung Cheng University, Chia-Yi, Taiwan 62117

Email:
cjsung@math.ccu.edu.tw

**Luen-fai Tam**

Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Email:
lftam@math.cuhk.hk

**Jiaping Wang**

Affiliation:
Department of Mathematics, Stanford University, Stanford, California 94305

Email:
jwang@math.stanford.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03246-7

Received by editor(s):
December 16, 1994

Additional Notes:
The first author was partially supported by NSC grant# 830208M194030.

The second author was partially supported by NSF grant #DMS9300422 .

Communicated by:
Peter Li

Article copyright:
© Copyright 1996
American Mathematical Society