Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$p$-sequentiality and $p$-Fréchet-Urysohn property of Franklin compact spaces


Authors: S. Garcia-Ferreira and V. I. Malykhin
Journal: Proc. Amer. Math. Soc. 124 (1996), 2267-2273
MSC (1991): Primary 54A20, 54A35
DOI: https://doi.org/10.1090/S0002-9939-96-03322-9
MathSciNet review: 1327014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Franklin compact spaces defined by maximal almost disjoint families of subsets of $\omega $ are considered from the view of its $p$-sequentiality and $p$-Fréchet-Urysohn-property for ultrafilters $p\in \omega^*$. Our principal results are the following: CH implies that for every $P$-point $p\in \omega^*$ there are a Franklin compact $p$-Fréchet-Urysohn space and a Franklin compact space which is not $p$-Fréchet-Urysohn; and, assuming CH, for every Franklin compact space there is a $P$-point $q\in \omega^*$ such that it is not $q$-Fréchet-Urysohn. Some new problems are raised.


References [Enhancements On Off] (What's this?)

  • [B$_1$] A. I. Baskirov, On the classification of quotient mappings and compact sequential spaces, Soviet Math. Dokl. 15 (1974), 1104--1109. MR 50:11159
  • [B$_2$] ------, On maximal disjoint systems and Franklin bicompacta, Soviet Math. Dokl. 19 (1978), 864--868. MR 80m:54032
  • [BM] B. Boldjiev and V. I. Malichin, The sequentiality is equivalent to the $\mathcal F $-Fréchet-Urysohn property, Comment. Math. Univ. Carolin. 31 (1990), 23--25. MR 91g:54005
  • [F] S. P. Franklin, Spaces in which sequences suffice II, Fund. Math. 61 (1967), 51--56. MR 36:5882
  • [G] S. Garcia-Ferreira, On $\operatorname {FU} (p)$-spaces and $p$-sequential spaces, Comment. Math. Univ. Carolin. 32 (1991), 161--171. MR 92m:54006
  • [GT] S. Garcia-Ferreira and A. Tamariz-Mascarua, On $p$-sequential $p$-compact spaces, Comment. Math. Univ. Carolin. 34 (1993), 347--356. MR 94m:54008
  • [Ka] M. Katetov, Products of filters, Comment. Math. Univ. Carolin. 9 (1968), 173--189. MR 40:3496
  • [Koc] L. D. Kocinac, A generalization of chain-net spaces, Publ. Inst. Math. (Beograd) 44 (58) (1988), 109--114. MR 90h:54006
  • [Ko] A. P. Kombarov, On the theorem of A. M. Stone, Soviet Math. Dokl. 27 (1983), 544--547. MR 85j:54029
  • [Ma$_1$] V. I. Malykhin, Sequential bicompacta: \v{C}ech-Stone extensions and $\pi $-points, Moscow Univ. Math. Bull. 30 (1975), 18--23. MR 51:11432
  • [Ma$_2$] ------, On sequential and Fréchet-Urysohn bicompacta, Moscow Univ. Math. Bull. 31 (1976) 33--37. MR 58:7534
  • [Ma$_3$] ------, The sequentiality and the Fréchet-Urysohn property with respect to ultrafilters, Acta Univ. Carolin.---Math. Phys. 31 (1990), 65--69. MR 92h:54006
  • [Mi] Ch. Mills, An easier proof of the Shelah $P$-point independence theorem (to appear).
  • [R] W. Rudin, Homogeneity problems in the theory of \v{C}ech compactifications, Duke Math. J. 23 (1956), 409--419. MR 18:324
  • [S] A. Szymanski, The existence of $P(\alpha )$-points of $N^*$ for $\aleph _0<\alpha <\mathfrak c $, Colloq. Math. 37 (1977), 279--184. MR 58:7571
  • [W] E. L. Wimmers, The Shelah $P$-point independence theorem, Israel J. Math. 43 (1982), 28--48. MR 85e:03118

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 54A20, 54A35

Retrieve articles in all journals with MSC (1991): 54A20, 54A35


Additional Information

S. Garcia-Ferreira
Affiliation: Instituto de Matematicas, Unidad Morelia (UNAM), Nicolás Romero 150, Morelia, Michoacan 58000, México
Email: garcia@servidor.unam.mx, sgarcia@zeus.ccu.umich.mx

V. I. Malykhin
Affiliation: State Academy of Management, Rjazanskij Prospekt 99, Moscow, Russia 109 542
Email: matem@acman.msk.su

DOI: https://doi.org/10.1090/S0002-9939-96-03322-9
Keywords: Ultrafilter, MAD family, Franklin compact space, Rudin-Keisler order, $p$-sequential, $p$-Fr\'echet Urysohn, ultra-sequential, ultra-Fr\'echet-Urysohn
Received by editor(s): July 5, 1993
Received by editor(s) in revised form: January 27, 1995
Communicated by: Franklin D. Tall
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society