Duality and perfect probability spaces
Authors:
D. Ramachandran and L. Rüschendorf
Journal:
Proc. Amer. Math. Soc. 124 (1996), 22232228
MSC (1991):
Primary 60A10, 28A35
MathSciNet review:
1342043
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Given probability spaces let denote the set of all probabilities on the product space with marginals and and let be a measurable function on Continuous versions of linear programming stemming from the works of Monge (1781) and KantorovichRubin\v{s}tein (1958) for the case of compact metric spaces are concerned with the validity of the duality (where is the collection of all probability measures on with and as the marginals). A recently established general duality theorem asserts the validity of the above duality whenever at least one of the marginals is a perfect probability space. We pursue the converse direction to examine the interplay between the notions of duality and perfectness and obtain a new characterization of perfect probability spaces.
 1.
R.
M. Dudley, Probabilities and metrics, Matematisk Institut,
Aarhus Universitet, Aarhus, 1976. Convergence of laws on metric spaces,
with a view to statistical testing; Lecture Notes Series, No. 45. MR 0488202
(58 #7764)
 2.
B.
V. Gnedenko and A.
N. Kolmogorov, Limit distributions for sums of independent random
variables, AddisonWesley Publishing Company, Inc., Cambridge, Mass.,
1954. Translated and annotated by K. L. Chung. With an Appendix by J. L.
Doob. MR
0062975 (16,52d)
 3.
L.
V. Kantorovič and G.
Š. Rubinšteĭn, On a space of completely
additive functions, Vestnik Leningrad. Univ. 13
(1958), no. 7, 52–59 (Russian, with English summary). MR 0102006
(21 #808)
 4.
Hans
G. Kellerer, Duality theorems for marginal problems, Z.
Wahrsch. Verw. Gebiete 67 (1984), no. 4,
399–432. MR
761565 (86i:28010), http://dx.doi.org/10.1007/BF00532047
 5.
Monge, G. (1781). Mémoire sur la théorie des déblais ét ramblais. Mem. Math. Phys. Acad. Roy. Sci. Paris, 666704.
 6.
Jacques
Neveu, Mathematical foundations of the calculus of
probability, Translated by Amiel Feinstein, HoldenDay, Inc., San
Francisco, Calif.LondonAmsterdam, 1965. MR 0198505
(33 #6660)
 7.
Jan
K. Pachl, Two classes of measures, Colloq. Math.
42 (1979), 331–340. MR 567571
(82b:28012)
 8.
Jan
K. Pachl, Correction to: “Two classes of measures”
[Colloq. Math. 42 (1979), 331–340;\ MR 82b:28012], Colloq. Math.
45 (1981), no. 2, 331–333. MR 665799
(84c:28009)
 9.
Svetlozar
T. Rachev, Probability metrics and the stability of stochastic
models, Wiley Series in Probability and Mathematical Statistics:
Applied Probability and Statistics, John Wiley & Sons, Ltd.,
Chichester, 1991. MR 1105086
(93b:60012)
 10.
Ramachandran, D. (1979). Perfect Measures, I and II. ISI Lecture Notes Series, 5 and 7, New Delhi, Macmillan. MR 81h:6005b; MR 81h:6005a
 11.
Ramachandran, D. and Rüschendorf, L. (1995). A general duality theorem for marginal problems. Probab. Theory Relat. Fields, 101, 311319.
 12.
V.
Strassen, The existence of probability measures with given
marginals, Ann. Math. Statist. 36 (1965),
423–439. MR 0177430
(31 #1693)
 1.
 Dudley, R.M. : Probabilities and Metrics. Lecture Notes Series No. 45. Aarhus: Matematisk Institut, 1976. MR 58:7764
 2.
 Gnedenko, B.V., and Kolomogorov, A.N. (1954). Limit distributions for sums of independent random variables. Addison Wesley, Cambridge. MR 16:52d
 3.
 Kantorovich, L.V., and Rubinstein, G.S. (1958). On a space of completely additive functions (in Russian). Vestnik Leningrad Univ . 13/7, 5259. MR 21:808
 4.
 Kellerer, H.G. (1984). Duality Theorems for marginal problems. Z. Wahrscheinlichkeitstheorie verw. Gebiete 67, 399432. MR 86i:28010
 5.
 Monge, G. (1781). Mémoire sur la théorie des déblais ét ramblais. Mem. Math. Phys. Acad. Roy. Sci. Paris, 666704.
 6.
 Neveu, J. (1965). Mathematical foundations of the calculus of probability. Holden Day, London. MR 33:6660
 7.
 Pachl, J. (1979). Two classes of measures. Colloq. Math. 42, 331340. MR 82b:28012
 8.
 Pachl, J. (1981). Correction to the paper `` Two classes of measures. '' Colloq. Math. 45, 331333. MR 84c:28009
 9.
 Rachev, S.T. : Probability metrics and the stability of stochastic models. New York: Wiley 1991 MR 93b:60012
 10.
 Ramachandran, D. (1979). Perfect Measures, I and II. ISI Lecture Notes Series, 5 and 7, New Delhi, Macmillan. MR 81h:6005b; MR 81h:6005a
 11.
 Ramachandran, D. and Rüschendorf, L. (1995). A general duality theorem for marginal problems. Probab. Theory Relat. Fields, 101, 311319.
 12.
 Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423439. MR 31:1693
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
60A10,
28A35
Retrieve articles in all journals
with MSC (1991):
60A10,
28A35
Additional Information
D. Ramachandran
Affiliation:
Department Of Mathematics and Statistics, California State University, 6000 J Street, Sacramento, California 958196051
Email:
chandra@csus.edu
L. Rüschendorf
Affiliation:
California State University, Sacramento and Universität Freiburg
Address at time of publication:
Institut für Mathematische Stochastik, AlbertLudwigsUniversität, Hebelstr. 27, D79104 Freiburg, Germany
Email:
ruschen@buffon.mathematik.unifreiburg.de
DOI:
http://dx.doi.org/10.1090/S0002993996034624
PII:
S 00029939(96)034624
Keywords:
Duality theorem,
marginals,
perfect measure,
Marczewski function
Received by editor(s):
December 15, 1994
Additional Notes:
Research supported in part by an Internal Awards Grant from the California State University, Sacramento
Communicated by:
Richard T. Durrett
Article copyright:
© Copyright 1996
American Mathematical Society
