Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Generalized evaluation subgroups of product spaces relative to a factor

Authors: Kee Young Lee and Moo Ha Woo
Journal: Proc. Amer. Math. Soc. 124 (1996), 2255-2260
MSC (1991): Primary 55P45
MathSciNet review: 1350952
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any $CW$-complexes $X$ and $Y$, we show that $G_{n}(X \times Y, X) = G_{n}(X) \oplus \pi _{n}(Y)$. We use this fact to compute generalized evaluation subgroups of generalized tori relative to a sphere.

References [Enhancements On Off] (What's this?)

  • 1. D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840--856. MR 32:6454
  • 2. ------, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729--756. MR 43:1181
  • 3. ------, Covering transformations and universal fibrations, Illinois J. Math.13(1969),432-437. MR 39:952
  • 4. B. Gray, Homotopy Theory, Academic press, New York, 1975. MR 53:6528
  • 5. G. E. Lang, Jr., Evaluation subgroups of factor spaces, Pacific J. Math. 42 (1972), 701--709. MR 47:2595
  • 6. K.Y. Lee and M.H. Woo, G-sequences and $\omega $-homology of a $CW$-pair, Topology and its application 52 (1993), 221--236. MR 94i:55016
  • 7. K.L. Lim, On cyclic maps, J. Austral. Math. Soc. Ser. A, 32 (1982), 349--357. MR 83e:55003
  • 8. N. Oda, The homotopy set of the axes of pairings, Canad. J. Math. 42 (1990), 856--868.
  • 9. J. Siegel, G-spaces, W-spaces and H-spaces, Pacific J. Math. 31 (1969), 209--214. MR 48:4950
  • 10. K. Varadarajian, Generalized Gottlieb Groups, J. Indian Math. Soc. 33 (1969), 141--164. MR 43:6926
  • 11. G. W. Whitehead, Elements of homotopy theory, Springer-Verlag, New York, 1978. MR 80b:55001
  • 12. M. H. Woo and J. R. Kim, Certain subgroups of homotopy groups, J. of Korean Math. Soc. 21 (1984), 109--120. MR 86c:55014
  • 13. M. H. Woo and K. Y. Lee, The relative evaluation subgroups of a CW-pair, J. of Korean Math. Soc. 25 (1988), 149--160. MR 89f:55011
  • 14. ------, Homology and generalized evaluation subgroups of homotopy groups, J. of Korean Math. Soc. 25 (1988), 333--342. MR 89k:55026

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55P45

Retrieve articles in all journals with MSC (1991): 55P45

Additional Information

Kee Young Lee
Affiliation: Department of Mathematics, Taejon National University of Technology, Taejon 300, Korea

Moo Ha Woo
Affiliation: Department of Mathematics Education, Korea University, Seoul 136, Korea

Keywords: Generalized evaluation subgroup, $G$-sequence of the trivial fibration, trivial fibration
Received by editor(s): January 25, 1995
Additional Notes: Partially supported by TGRC-KOSEF and BSRI 94-1409.
Communicated by: Thomas Goodwillie
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society