On rigidity of affine surfaces

Author:
Barbara Opozda

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2175-2184

MSC (1991):
Primary 53A15; Secondary 53B05

DOI:
https://doi.org/10.1090/S0002-9939-96-03715-X

MathSciNet review:
1363435

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Rigidity of nondegenerate Blaschke surfaces in is studied. The rigidity criteria are given in terms of , where is the curvature of the Blaschke connection . If the rank of is 2, then the surface is rigid. If , it is nonrigid. In the case where the rank of is 1 there are both rigid and nonrigid surfaces. This case is discussed for various types of surfaces.

**[C]**E. Cartan,*Sur la connexion affine des surfaces*, C. R. Acad. Sci. Paris**178**(1924), 292-295.**[DNV]**F. Dillen, K. Nomizu, L. Vrancken,*Conjugate connections and Radon's theorem in affine differential geometry*, Monatsh. Math.**109**(1990), 221-235. MR**91e:53015****[NO]**K. Nomizu, B. Opozda,*Integral formulas for affine surfaces and rigidity theorems of Cohn-Vossen type*, Geometry and Topology of Submanifolds IV, World Scientific, Singapore, 1993, pp. 133--142. MR**93j:53012****[NS]**K. Nomizu, T. Sasaki,*Affine Differential Geometry*, Cambridge University Press, 1994. CMP**95:06****[O1]**B. Opozda,*Locally symmetric connections on surfaces*, Results in Math.**1481**(1991), 185-191. MR**93b:53014****[O2]**B. Opozda,*A class of projectively flat surfaces*, Math. Z.**219**(1995), 77-92. CMP**95:15****[OS]**B. Opozda, T. Sasaki,*Surfaces whose affine normal images are curves*, Kyushu J. Math.**49**(1995), 1-10.**[S]**U. Simon,*Global uniqueness for ovaloids in Euclidean and affine differential geometry*, Tôhoku Math. J.**44**(1992), 327-334. MR**93i:53012****[Sl]**W. Slebodzinski,*Sur quelques problèmes de la théorie des surfaces de l'espace affine*, Prace Mat. Fiz.**46**(1939), 291-345.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
53A15,
53B05

Retrieve articles in all journals with MSC (1991): 53A15, 53B05

Additional Information

**Barbara Opozda**

Affiliation:
Instytut Matematyki, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland

Email:
opozda@im.uj.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-96-03715-X

Keywords:
Blaschke surface,
metric compatible with connection

Received by editor(s):
May 31, 1994

Additional Notes:
The research was supported by the Kambara Fund of Kobe University and the KBN grant 2P30103004.

Communicated by:
Christopher Croke

Article copyright:
© Copyright 1996
American Mathematical Society