ENDOMORPHISM RINGS OF COMPLETELY PURE-INJECTIVE MODULES

JOSÉ L. GÓMEZ PARDO AND PEDRO A. GUIL ASENSIO

(Communicated by Ken Goodearl)

Abstract. Let R be a ring, $E = E(R_R)$ its injective envelope, $S = \text{End}(E_R)$ and J the Jacobson radical of S. It is shown that if every finitely generated submodule of E embeds in a finitely presented module of projective dimension ≤ 1, then every finitely generated right S/J-module X is canonically isomorphic to $\text{Hom}_R(E, X \otimes_S E)$. This fact, together with a well-known theorem of Osofsky, allows us to prove that if, moreover, E/JE is completely pure-injective (a property that holds, for example, when the right pure global dimension of R is ≤ 1 and hence when R is a countable ring), then S is semiperfect and R_R is finite-dimensional. We obtain several applications and a characterization of right hereditary right noetherian rings.

Introduction

Let R be a ring, M_R a right R-module, and $S = \text{End}(M_R)$. Then there exists an adjoint pair:

$$\text{Hom}_R(M, -) : \text{Mod } R \rightleftarrows \text{Mod } : - \otimes_S M$$

which induces a functorial morphism $\alpha : 1_{\text{Mod } S} \to \text{Hom}_R(M, - \otimes_S M)$. If X is a right S-module such that α_X is an isomorphism, we will say that X_S is M-invariant. It is well known that when every right S-module X is M-invariant, useful information can be passed from M_R to S. This is what happens, for example, when M_R is a finitely generated projective module, which makes it possible to characterize properties of the endomorphism ring S in terms of M_R. This property also holds when M_R is finitely presented and S is a (von Neumann) regular ring and this, coupled with Osofsky’s theorem \cite{8, 9} that asserts that a ring whose cyclic right modules are all injective is semisimple, has been exploited in \cite{3} to obtain an easy proof of the result of Damiano that shows that a right PCI ring (i.e., a ring with each proper cyclic right module injective) is right noetherian.

This technique was also (implicitly) applied in \cite{1} to a right hereditary ring R whose injective envelope $E(R_R)$ is projective, showing that R is, in this case, a (two-sided) hereditary artinian QF-3 ring. An extension in \cite[Corollary 6]{3} shows that if $E(R_R)$ is just finitely presented (instead of projective), then R is a right

Received by the editors June 23, 1994 and, in revised form, October 5, 1994 and November 29, 1994.

1991 Mathematics Subject Classification. Primary 16S50; Secondary 16D50, 16E60, 16P60, 16S90.

Work partially supported by the DGICYT (PB93-0515, Spain). The first author was also partially supported by the European Community (Contract CHRX-CT93-0091).

©1996 American Mathematical Society
artinian ring with Morita duality. The key point of this proof is to show that R is right finite-dimensional. But, as the endomorphism ring S of $E = E(R_R)$ is regular, all the cyclic right S-modules are E-invariant. This makes it possible to transfer the injectivity property and then to use Osofsky’s theorem to show that S is semisimple.

In this paper we consider the rather more general situation that arises when the injective envelope $E_R = E(R_R)$ has the property that every finitely generated submodule embeds in a finitely presented module whose projective dimension is ≤ 1 (this includes the right hereditary rings with finitely presented injective envelope, but also the rings R such that every finitely generated submodule of E_R embeds in a free module). If $S = \text{End}(E_R)$ and J is the radical of S, we prove in Theorem 1.6 that each finitely generated right S/J-module is E-invariant—a result that will be our main tool in the rest of the paper. This allows us to apply the transfer techniques sketched above to the ring S/J and hence substantially broaden the scope of these methods. In this setting, we usually cannot expect that the endomorphism ring S is semisimple. In general, it is not even regular. However, we show that when certain quotients of E_R are pure-injective, then S is semiperfect and hence R_R is finite-dimensional. More specifically, we assume that E/JE is a completely pure-injective R-module, i.e., a module such that each pure quotient of itself is pure-injective. We give several applications and we extend [3, Corollary 6] by proving that if R is right hereditary and every finitely generated submodule of E_R is finitely presented, then R is right noetherian.

In the last part of the paper we consider rings R whose right pure global dimension (cf. [6, 7]) is ≤ 1. This includes all countable rings. If every finitely generated submodule of E_R embeds in a finitely presented module of projective dimension ≤ 1, then we show that E/JE is pure-injective (Theorem 2.1), so that E/JE is completely pure-injective in this case and hence R is, again, finite-dimensional. As an application we show that, for these rings, the property that R is right nonsingular and every finitely generated right R-module embeds in a free module is right-left symmetric.

We refer to [5] and [11] for all undefined notions used in the text.

1. M-invariant modules

Let $S M_R$ be a bimodule. We have a pair of adjoint functors $\text{Hom}_R(M, -) : \text{Mod} - R \leftrightarrows \text{Mod} - S : - \otimes_S M$ and the corresponding adjunction morphisms α_X, for every $X \in \text{Mod} - S$. The right S-modules X such that α_X is an isomorphism will, again, be called M-invariant. The following result is well known (cf. [12], [11]).

Proposition 1.1. Let $S M_R$ be a bimodule. Then the following assertions hold:

(i) If L_R is pure-injective, then $\text{Hom}_R(M, L)$ is a pure-injective right S-module.

(ii) If $S M$ is flat and L_R is M-injective, then $\text{Hom}_R(M, L)$ is injective.

Our interest in M-invariant modules is motivated by the fact that certain injectivity properties are easily transferred to these modules. From Proposition 1.1 we have:

Proposition 1.2. Let $S M_R$ be a bimodule and X an M-invariant right S-module. Then the following assertions hold:

(i) If $X \otimes_S M$ is pure-injective, then X is pure-injective.

(ii) If $S M$ is flat and $X \otimes_S M$ is M-injective, then X is injective.
In order to exploit Proposition 1.2 we need to have M-invariant S-modules. Recall that if E_R is (quasi-)injective (or pure-injective), then S/J (where $S = \text{End}(E_R)$ and $J = J(S)$) is a regular ring and idempotents lift modulo J. We want to apply Osolinsky’s theorem to S/J and for this we need to prove that the cyclic right S/J-modules are E-invariant. We start by giving a useful sufficient condition for α_X to be a monomorphism.

Proposition 1.3. Let P_R be a finitely generated projective module, $E = E(P_R)$ and $S = \text{End}(E_R)$. Then α_X is a monomorphism for each finitely generated right S/J-module X.

Proof. Since X is an S/J-module and $XJ = 0$, we have a free presentation of X in $\text{Mod}-S$, say $S^t \xrightarrow{h} S^n \xrightarrow{p} X \to 0$, where $J^n = J(S^n) \subseteq \text{Ker } p = \text{Im } h$. Applying $- \otimes_S E$ we obtain an exact sequence in $\text{Mod}-R$

$$E^t \xrightarrow{h} E^n \xrightarrow{p^*} X \otimes_S E \to 0.$$

Let $Z := \text{Im } h = \text{Ker } p$, with canonical projection $v : E^t \to Z$ and canonical injection $u : Z \to E^n$. Then each $f \in \text{Hom}_R(E, E^n)$ such that $p^* \circ f = 0$ factors in the form $f = u \circ f'$, where $f' \in \text{Hom}_R(E, Z)$. Since P is projective, we obtain a morphism $g : P \to E^t$ that makes the diagram

$$
\begin{array}{ccc}
P & \xrightarrow{j} & E \\
\downarrow g & & \downarrow f' \\
E^t & \xrightarrow{v} & Z
\end{array}
$$

commute, where j is the canonical inclusion. Since P is finitely generated, $g(P) \subseteq E^t$ for some finite subset F of I. As E is injective, there exists a homomorphism $t : E \to E^t$ such that $t \circ j = g$. Hence $h_* \circ t \circ j = h_* \circ g = f \circ j$, so that $(h_* \circ t - f) \circ j = 0$. Since j is an essential monomorphism by hypothesis, $\text{Ker } (h_* \circ t - f)$ is essential in E. Consider the following commutative diagram of right S-modules:

$$
\begin{array}{ccc}
S^t & \xrightarrow{h} & S^n & \xrightarrow{p} & X & \to 0 \\
\downarrow \alpha_{S^t} & & \downarrow \alpha_{S^n} & & \downarrow \alpha_X \\
\text{Hom}_R(E, E^t) & \xrightarrow{h_*} & \text{Hom}_R(E, E^n) & \xrightarrow{p^*} & \text{Hom}_R(E, X \otimes_S E)
\end{array}
$$

Then $f \in \text{Hom}_R(E, E^n)$ and $f \in \text{Ker } p^*$, so there exists $t \in \text{Hom}_R(E, E^t)$ such that $h_*(t) - f$ has essential kernel and, hence, belongs to $J(S^n)$. Thus $h_*(t) - f \in \alpha_{S^n}(\text{Ker } p)$. On the other hand, since $\text{Im } t \subseteq E^t$ for F finite, there exists $q \in S^t$ such that $t = \alpha_{S^t}(q)$ and so $h_*(t) = (\alpha_{S^n} \circ h)(q) \in \alpha_{S^n}(\text{Ker } p)$. Thus we have that $f \in \alpha_{S^n}(\text{Ker } p)$ and this implies that α_X is a monomorphism. \hfill \Box

Recall that R is called a right Kasch ring whenever $E(R_R)$ is a cogenerator of $\text{Mod}-R$. From the preceding result we immediately obtain:

Corollary 1.4. Let R be a right Kasch ring. Then $\text{End}(E(R_R))$ is also a right Kasch ring.

Proof. Let $E = E(R_R)$, $S = \text{End}(E_R)$ and $J = J(S)$. If C is a simple right S-module, then $CJ = 0$ and so C is an S/J-module. Thus α_C is a monomorphism by
Proposition 1.3 and, as $C \otimes_S E$ is cogenerated by E, we obtain a monomorphism $C \xrightarrow{\alpha_x} \text{Hom}_R(E, C \otimes_S E) \to \text{Hom}_R(E, E^1) \cong S^1$, for some set I. Hence C embeds in S_J. \[\square\]

Now, in order to obtain E-invariant modules from Proposition 1.3, we need to give conditions for α_X to be an epimorphism. The following lemma will be crucial for this purpose.

Lemma 1.5. Let P_R be a finitely generated projective right R-module, $E = E(P_R)$ its injective hull, and $S = \text{End}(E_R)$. Assume that each finitely generated submodule of E embeds in a finitely presented module of projective dimension ≤ 1. Then, for each finitely generated right S/J-module X, $\text{Hom}_R(E/P, X \otimes_S E) = 0$.

Proof. Let $f \in \text{Hom}_R(E/P, X \otimes_S E)$ and $\pi : E \to E/P$ the canonical projection. We want to prove that $g = f \circ \pi = 0$. Since P is finitely generated, E is the direct limit of all its finitely generated submodules that contain P. Thus it will be enough to show that if $P \subseteq Z \subseteq E$ and Z is finitely generated, then $g(Z) = 0$. By hypothesis, there exists a finitely presented right R-module F such that $\text{pd}(F) \leq 1$, and a monomorphism $\varphi : Z \to F$. Then, regarding P as a submodule of F, we get the following commutative diagram:

$$
\begin{array}{ccc}
Z & \xrightarrow{\varphi} & E \\
\downarrow \pi' & \swarrow \gamma & \downarrow \pi \\
Z/P & \xrightarrow{\psi} & E/P \\
\downarrow \beta & & \downarrow \alpha \\
F/P & & F/P
\end{array}
$$

where β is the monomorphism induced by φ, γ is obtained by the injectivity of E, and δ is induced by γ. We have that F/P is a finitely presented module. Consider the functorial exact sequence

$$0 = \text{Ext}^1_R(P, -) \to \text{Ext}^2_R(F/P, -) \to \text{Ext}^2_R(F, -) = 0.$$

Since $\text{pd}(F) \leq 1$, the last term is zero, and so $\text{pd}(F/P) \leq 1$. Next let $S^{(I)} \to S^n \xrightarrow{p} X \to 0$ be a free presentation of X in $\text{Mod-}S$ and consider the induced exact sequence in $\text{Mod-}R$, $E^{(I)} \to E^n \xrightarrow{\varphi \otimes E} X \otimes_S E \to 0$. Set $Y = \text{Ker}(p \otimes_S E)$. From the short exact sequence $0 \to K \to E^{(I)} \to Y \to 0$ we obtain the natural exact sequence

$$\text{Ext}^1_R(F/P, E^{(I)}) \to \text{Ext}^1_R(F/P, Y) \to \text{Ext}^2_R(F/P, K).$$

Since $\text{pd}(F/P) \leq 1$, we have that $\text{Ext}^2_R(F/P, K) = 0$ and, as F/P is finitely presented and E is injective, $\text{Ext}^1_R(F/P, E^{(I)}) \cong \text{Ext}^1_R(F/P, E^{(I)}) = 0$. Thus $\text{Ext}^1_R(F/P, Y) = 0$ and so we have an exact sequence

$$\text{Hom}_R(F/P, E^n) \xrightarrow{(\varphi \otimes E)} \text{Hom}_R(F/P, X \otimes E) \to \text{Ext}^1_R(F/P, Y) = 0$$

which shows that $(\varphi \otimes E)_\alpha = \text{Hom}_R(F/P, p \otimes E)$ is an epimorphism. Hence, there exists a morphism $\epsilon : F/P \to E^n$ such that $f \circ \delta = (p \otimes E) \circ \epsilon$. But, as E^n is injective and v is a monomorphism, $\epsilon \circ \beta : Z/P \to E^n$ can be extended to a map $\mu : E/P \to E^n$ such that $\mu \circ v = \epsilon \circ \beta$. This gives $(p \otimes E) \circ \mu \circ v = (p \otimes E) \circ \epsilon \circ \beta = f \circ \delta \circ \beta = f \circ \beta.$
Let $S/J \leq S/J$. The projectivity of ϕ and, if X shows that α is an element of S whose kernel contains P. Therefore $p_i \circ \mu \circ \pi \in J(S)$. Now, let x be an element of E and set $e_i = (\delta_{ij})_{i=1,\ldots,n} \in S$. Since $XJ = 0$ and $p_i \circ \mu \circ \pi \in J$,

\[
((p \otimes E) \circ \mu \circ \pi \circ u)(x) = (p \otimes E)((\mu \circ \pi)(x)) = \sum_{i=1}^n p(e_i) \circ (p_i \circ \mu \circ \pi)(x) = \sum_{i=1}^n p(e_i) \cdot (p_i \circ \mu \circ \pi) \otimes x = 0.
\]

This completes the proof. \hfill \Box

Theorem 1.6. Let P_R be a finitely generated projective module, $E = E(P_R)$ and $S = \text{End}(E_R)$. Assume that each finitely generated submodule of E embeds in a finitely presented module of projective dimension ≤ 1. Then each finitely generated right S/J-module is E-invariant.

Proof. Let X be a finitely generated right S/J-module. By Proposition 1.3 α_X is a monomorphism. It remains to prove that α_X is an epimorphism. Consider a free presentation $S^{(1)} \to S^n \xrightarrow{p} X \to 0$ of X in $\text{Mod}-S$. Tensoring with $S E$ yields an exact sequence in $\text{Mod}-R$, $E^{(1)} \to E^n \xrightarrow{p \otimes E} X \otimes_S E \to 0$. Now, if $\varphi \in \text{Hom}_R(E, X \otimes_S E)$ and $j : P \to E$ is the canonical inclusion, there is by the projectivity of P a morphism $t : P \to E^n$ such that $\varphi \circ j = (p \otimes E) \circ t$. Then, as E is injective, there exists $h : E \to E^n$ such that $h \circ j = t$. Thus we have $(p \otimes E) \circ h \circ j = (p \otimes E) \circ t = \varphi \circ j$, so that $(\varphi - (p \otimes E) \circ h) \circ j = 0$. Hence $g := \varphi - (p \otimes E) \circ h$ factors through the projection $\pi : E \to E/P$, say as $g = f \circ \pi$. By Lemma 1.5 we have that $f = 0$, and so $g = 0$ and $\varphi = (p \otimes E) \circ h$. Thus we see that $(p \otimes E)_*$ is an epimorphism and the commutative diagram:

\[
\begin{array}{ccc}
S^n & \xrightarrow{P} & X \\
\downarrow^{\alpha_X} & & \downarrow^{\alpha_X} \\
\text{Hom}_R(E, E^n) & \xrightarrow{(p \otimes E)_*} & \text{Hom}_R(E, X \otimes_S E)
\end{array}
\]

shows that α_X is indeed an epimorphism. \hfill \Box

If E_R is quasi-injective and $S = \text{End}(E_R)$, then S/J is a regular right self-injective ring. If we set $\tilde{E} := (S/J) \otimes_S E = E/J E$, then we have a bimodule $S/J \tilde{E}$ and, if $X \in \text{Mod}-S/J$ we have that

\[
X \otimes_S E \cong (X \otimes_{S/J} S/J) \otimes_S E \cong X \otimes_{S/J} ((S/J) \otimes_S E) \cong X \otimes_{S/J} \tilde{E}.
\]

Thus, if we identify $X \otimes_S E$ with $X \otimes_{S/J} \tilde{E}$, and if $\tilde{\alpha}_X : X \to \text{Hom}_R(\tilde{E}, X \otimes_{S/J} \tilde{E})$ is the canonical morphism and $p : E \to \tilde{E}$ the canonical projection, we see that $\text{Hom}_R(p, X \otimes_S E) \circ \tilde{\alpha}_X = \alpha_X$. Since $\text{Hom}_R(p, X \otimes_S E)$ is a monomorphism, if X is E-invariant, then X is E-invariant.

Specifically, if $X = S/J$, then we have proved

Corollary 1.7. Let P_R be a finitely generated projective module, $E = E(P_R)$, $S = \text{End}(E_R)$ and $J = J(S)$. If every finitely generated submodule of E embeds in a finitely presented module of projective dimension ≤ 1, there is a canonical isomorphism $S/J \cong \text{End}(E/J E)$.

Proposition 1.8. Let E_R be quasi-injective (or pure-injective) and let X be a right S/J-module which is E-invariant. If $X \otimes_S E$ is either E-injective or pure-injective, then X is E-invariant.
Proof. Let $\bar{E} = E/J E$. Since X is E-invariant, it is also \bar{E}-invariant. On the other hand, as S/J is regular, $S/J \bar{E}$ is flat. By Proposition 1.2 applied to the adjunction defined by $S/J \bar{E}_R$, if we assume that $X \otimes_S E \cong X \otimes_{S/J} \bar{E}$ is E-injective, we get that $X_{S/J}$ is injective. Similarly, if $X \otimes_{S/J} \bar{E}$ is pure-injective, then $X_{S/J}$ is pure-injective and hence, since S/J is regular, injective.

We will say that a module M is completely pure-injective when every pure quotient of M is pure-injective. (Note the change of terminology with respect to [3].)

Corollary 1.9. Let P_R be a finitely generated projective module, $E = E(P_R)$, $S = \text{End}(E_R)$, and $J = J(S)$. Assume that every finitely generated submodule of E_R embeds in a finitely presented right R-module of projective dimension ≤ 1 and that $E/J E$ is completely pure-injective. Then S is semiperfect and P_R is finite-dimensional.

Proof. By Theorem 1.6, each finitely generated right S/J-module X is E-invariant. Since the canonical projection $S/J \twoheadrightarrow X$ is a pure epimorphism (since S/J is regular), we have that the induced R-epimorphism $E/J E \to X \otimes_S E$ is also pure. Thus $X \otimes_S E$ is a pure-injective right R-module by hypothesis, and by Proposition 1.8, $X_{S/J}$ is injective. Then, by Osofsky's theorem [8, 9], S/J is semisimple and hence S is semiperfect. This is equivalent to E_R (and hence to P_R) being finite-dimensional.

The preceding corollary can be regarded as a generalization of [3, Corollary 6]. A more specific extension of this result is the following:

Corollary 1.10. Let R be a right hereditary ring. Then R is right noetherian if and only if every finitely generated submodule of $E(R_R)$ is finitely presented.

Proof. If every finitely generated submodule of $E(R_R)$ is finitely presented, then R_R is right finite-dimensional by Corollary 1.9. Thus, using [5, Corollary 5.20], we see that R is right noetherian. The converse is clear.

2. Rings of pure global dimension less than or equal to one

Recall that the pure-injective dimension of a right R-module M is defined as the smallest nonnegative integer (or ∞) such that there exists an exact sequence $0 \to M \to E_0 \to E_1 \to \cdots \to E_n \to 0$, where the E_i, $i = 0, \ldots, n$, are pure-injective modules and the associated short exact sequences are pure exact. The supremum of the pure-injective dimensions of the right R-modules is called the right pure global dimension of R [7, 6], and is denoted by $r.\text{pgldim}(R)$. Thus the rings R such that $r.\text{pgldim}(R) \leq 1$ provide a natural source of completely pure-injective modules. The following theorem will be useful in order to apply our results to these rings.

Theorem 2.1. Let R be a ring, $E = E(R_R)$, $S = \text{End}(E_R)$ and $J = J(S)$. If every finitely generated submodule of E_R embeds in a finitely presented module of projective dimension ≤ 1, then $E/J E$ is a pure-injective R-module.

Proof. Let $\bar{E} = E/J E$. Consider the exact sequence in $\text{Mod-}R$, $0 \to R \xrightarrow{j} E \to E/R \to 0$, and let $g \in \text{Hom}_R(R, \bar{E}) \cong \bar{E}$. Then g induces a homomorphism $h : R_R \to E$ such that if $g : E \to \bar{E}$ is the canonical projection, then
By the injectivity of E, h extends to $t : E \to E$, so g extends to a morphism $q \circ t : E \to \bar{E}$. Thus, in the exact sequence

$$\text{Hom}_R(E/R, \bar{E}) \to \text{Hom}_R(E, \bar{E}) \xrightarrow{j^*} \text{Hom}_R(R, \bar{E})$$

j^* is an epimorphism and hence an isomorphism since $\text{Hom}_R(E/R, \bar{E}) = 0$ by Lemma 1.5. Since S/J is E-invariant by Theorem 1.6, we have isomorphisms of left S/J-modules:

$$\bar{E} \cong \text{Hom}_R(E, \bar{E}) \cong \text{Hom}_R(E, (S/J) \otimes_S E) \cong S/J.$$

Let $\bar{E}^* = \text{Hom}_{S/J}(\bar{E}, S/J)$. Since \bar{E} is reflexive as a S/J-module,

$$\bar{E} \cong \text{Hom}_{S/J}(\bar{E}^*, S/J).$$

Since S/J is right self-injective, applying Proposition 1.1 to the bimodule $R\bar{E}^*_{S/J}$ we obtain that \bar{E} is a pure-injective right R-module.

Remark. As a consequence of Theorem 2.1 we see that, in Corollary 1.9, it is enough to assume that every proper pure quotient of E/JE is pure-injective, instead of requiring that E/JE be completely pure-injective.

Corollary 2.2. Let R be a ring such that $r.pgldim(R) \leq 1$. Assume, further, that every finitely generated submodule of $E(R_R)$ embeds in a finitely presented module of projective dimension ≤ 1. Then R is right finite-dimensional.

Proof. If $E = E(R_R)$ we have, by Theorem 2.1, that E/JE is pure-injective and hence completely pure-injective. Then R is right finite-dimensional by Corollary 1.9.

An interesting class of rings of right pure global dimension ≤ 1 is the class of countable rings [6, 7]. For instance, it follows from the preceding results that every countable ring R such that every finitely generated submodule of $E(R_R)$ embeds in a finitely presented module of projective dimension ≤ 1 is finite-dimensional.

The following result is a partial generalization of [1, Theorem 3.2], and shows that the rings such that $r.pgldim(R) \leq 1$ and $E(R_R)$ is projective are not far from being right QF-3 rings (but they need not be, as the ring $R = (\begin{smallmatrix} 0 & 0 \\ 0 & 2 \end{smallmatrix})$ shows).

Corollary 2.3. Let R be a ring such that $r.pgldim(R) \leq 1$ and $E(R_R)$ is projective. Then R has a faithful injective right ideal.

Proof. By Corollary 2.2 R is right finite-dimensional and, using [10, Lemma 2], we obtain the result.

The rings R such that every finitely generated right R-module embeds in a free module have been called right FGF by Faith [2]. It is still an open problem whether a right FGF ring must be QF.

Corollary 2.4. Let R be a right FGF ring such that $r.pgldim(R) \leq 1$ and R has essential right socle. Then R is QF.

Proof. R is right finite-dimensional by Corollary 2.2. Thus $\text{Soc}(R_R)$ is finitely generated and, as R_R has essential socle, we see that R_R has finite essential socle. Since each finitely generated right module embeds in a (finitely generated) free right R-module, we see that every finitely generated right module has finite essential socle, so that R is right artinian. Then R is QF by [2].
Recall that a ring homomorphism \(\varphi : R \to Q \) is a right flat epimorphism of rings (or a perfect right localization of \(R \)) precisely when \(RQ \) is flat and the canonical morphism \(Q \otimes_R Q \to Q \) is an isomorphism. Goodearl proved that if \(Q \) is the right maximal quotient ring of a right nonsingular ring \(R \), then the canonical morphism \(R \to Q \) is a left flat epimorphism if and only if every finitely generated nonsingular right \(R \)-module embeds in a free module [4, Theorem 7]. In general, this condition is not right-left symmetric, as is shown by the endomorphism ring of an infinite-dimensional vector space over a field. However, if \(r.p\text{gl.dim}(R) \leq 1 \), then we have symmetry.

Corollary 2.5. Let \(R \) be a ring such that \(r.p\text{gl.dim}(R) \leq 1 \). Then the following conditions are equivalent:

(i) \(R \) is right nonsingular and every finitely generated nonsingular right \(R \)-module embeds in a free module.

(ii) \(R \) is left nonsingular and every finitely generated nonsingular left \(R \)-module embeds in a free module.

(iii) \(R \) has a semisimple two-sided maximal quotient ring.

Proof. (i)\(\Rightarrow \) (iii) Let \(Q = Q_{\text{max}}(R) \) be the maximal right quotient ring of \(R \). By Corollary 2.2, \(R \) is right finite-dimensional and so \(Q \) is semisimple [11, Theorem XII.2.5]. Further, \(QR \) is flat by the result of Goodearl mentioned above [cf. also [5, Theorem 5.17] and [11, Theorem XII.7.1]]. But then it follows from [11, Corollary XII.7.3] that \(Q \) is also the maximal left quotient ring of \(R \).

(iii)\(\Rightarrow \) (i) Since \(Q \) is semisimple, \(R \) is right nonsingular by [11, Proposition XII.2.2]. Also, since the left maximal quotient ring \(Q \) of \(R \) is semisimple, the canonical homomorphism \(R \to Q \) is a left flat epimorphism. Then, using again [5, Theorem 5.17], we see that every finitely generated nonsingular right \(R \)-module embeds in a free module.

Finally, observe that the proof can be completed by symmetry, bearing in mind that condition (iii) is left-right symmetric.

An entirely similar argument can be applied to the characterization given by Cateforis and Goodearl of the right nonsingular rings such that every finitely generated nonsingular right \(R \)-module is projective [5, Theorem 5.18]. This class of rings is not right-left symmetric in general [5] but, from the preceding corollary and [5, Theorem 5.18], we have:

Corollary 2.6. Let \(R \) be a ring such that \(r.p\text{gl.dim}(R) \leq 1 \) and \(Q \) its maximal right quotient ring. Then the following conditions are equivalent:

(i) \(R \) is right nonsingular and every finitely generated nonsingular right \(R \)-module is projective.

(ii) \(R \) is left nonsingular and every finitely generated nonsingular left \(R \)-module is projective.

(iii) \(R \) is left and right semihereditary, and \(Q \) is a semisimple two-sided maximal quotient ring of \(R \).

References

Departamento de Alxebra, Universidade de Santiago, 15771 Santiago de Compostela, Spain
E-mail address: pardo@zmat.usc.es

Departamento de Matematicas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
E-mail address: paguil@fcu.um.es