THE ZEROS OF THE FIRST TWO DERIVATIVES
OF A MEROMORPHIC FUNCTION

J. K. LANGLEY

(Communicated by Albert Baernstein II)

Abstract. We prove a theorem which implies the following: if \(f \) is meromor-
phic of finite order in the plane and \(f' \) and \(f'' \) have only finitely many zeros,
then \(f \) has only finitely many poles.

1. Introduction

We begin with the following theorem, using the term meromorphic henceforth
to mean meromorphic in the plane.

Theorem A. Suppose that \(f \) is meromorphic and that \(f \) and \(f^{(k)} \) have only finitely
many zeros, for some \(k \geq 2 \). Then \(f \) has the form \(f(z) = R(z) \exp(P(z)) \), with
\(R \) rational and \(P \) a polynomial. In particular, \(f \) has finite order and only finitely
many poles.

Theorem A was conjectured by Hayman in 1959 [9], [10], [11], and was proved
for \(k \geq 3 \) by Frank [6]. The case \(k = 2 \) was settled in [13], having been proved by
Mues [16] for functions of finite lower order. Simple examples show that Theorem
A is not true for \(k = 1 \) (see, however, [4]). Now, it is easy to give examples of
total functions \(f \) such that \(f'' \) has no zeros, but the following conjecture seems
reasonable.

Conjecture 1. If \(f \) is meromorphic of finite order and \(f'' \) has only finitely many
zeros, then \(f \) has only finitely many poles.

We remark that (see Satz 5 of [15]), for any \(k \geq 2 \) and for any transcendental
meromorphic function \(f \), setting \(L = -f^{(k+1)}/(k+1)f^{(k)} \) and applying the first
fundamental theorem to \(L' + L^2 \) gives

\[
(k - 1)N_1(r, f) \leq 2N_2(r, f) + 2N(r, 1/f^{(k)}) + O(\log rT(r, f^{(k)}))
\]

as \(r \) tends to infinity outside a set of finite measure. Here \(N_1(r, f) \) counts the simple
poles of \(f \), while \(N_2(r, f) \) counts the points at which \(f \) has multiple poles (see [10],
[12] for notation). Thus Conjecture 1 is true if \(f \) has at most finitely many multiple
poles. We remark further that it has been conjectured by Gol’dberg that \(\overline{N}(r, f) \)
may be estimated in terms of \(N(r, 1/f'') \) and an error term which is \(o(T(r, f)) \), and
we refer the reader to [7], [8], [15], [18], in particular with regard to the related
Mues conjecture that \(\sum_{a \in \mathbb{C}} \delta(a, f') \leq 1 \).
We note further that Conjecture 1 is false for f of infinite order, as the following construction shows. Let Π be any entire function having infinitely many zeros, all simple, and use the Mittag-Leffler theorem to construct an entire function h such that $g(z) = \Pi^{-1}e^{h}$ has Laurent series development $g(z) = -2/(z - a) + O(|z - a|)$ near each zero a of Π. It is then easy to see that $f''/f' = g$ defines a meromorphic function such that f' and f'' have no zeros. For f of finite order, no such examples are possible.

Theorem 1. Let f be meromorphic of finite order such that f' and f'' have only finitely many zeros. Then f''/f' is rational and, in particular, f has only finitely many poles.

Theorem 1 will be deduced from a result concerning the class B, which consists of those meromorphic functions f such that the set of finite singularities of the inverse function f^{-1} is bounded. This means that there is some $S > 0$ such that f has no critical values or asymptotic values w with $S < |w| < \infty$. The following lemma was proved by Eremenko and Lyubich [5] (see also [1], [2]).

Lemma B. Let f be transcendental and meromorphic, in the class B, with $f(0) \neq \infty$. Then there exist positive constants c, R such that we have, for all z, the estimate $|zf'(z)/f(z)| \geq c \log^{+}|f(z)/R|$.

Lemma B is proved by noting that there exists $R > 0$ such that $|f(z)| < R$ on a path from 0 to ∞ and then, provided R is large enough, applying Bloch’s theorem to the function $\log(f^{-1}(e^{w}))$ in $\Re(w) > \log R$. We shall prove the following:

Theorem 2. Let f be transcendental meromorphic, in the class B, such that f''/f' has only finitely many critical values, and suppose that f''/f' has only finitely many zeros. Then f''/f' is rational.

The assumption in Theorem 2 that f is in the class B is not redundant, as the examples $f(z) = z - \tan z, g(z) = \int_{0}^{z} \int_{0}^{s} \exp(s^{2})dsdt$ show.

Corollary. Let f be transcendental and meromorphic of finite order, with only finitely many critical values, and suppose that f''/f' has only finitely many zeros. Then f''/f' is rational.

This corollary obviously establishes Theorem 1, and itself follows at once from Theorem 2 because, if f has finite order and only finitely many critical values, a recent result of Bergweiler and Eremenko [3] implies that f has only finitely many asymptotic values.

This research was carried out during a semester at Purdue University and the author would like to thank the Department of Mathematics and, in particular, David Drasin for their hospitality.

2. **Proof of Theorem 2**

We assume the existence of a meromorphic function f in the class B such that f''/f' is transcendental but has only finitely many zeros. We may clearly assume that $f(0)$ is finite. We note that f'/f'' has only finitely many poles, and we set $u(z) = \log |f'(z)/f''(z)|$.

By a result of Lewis, Rossi and Weitsman [14], there is a path Γ, starting at z_{0}, say, and tending to infinity, such that $u(z)/|\log|z|| \to +\infty$ as $z \to \infty$ on Γ, while the part of Γ joining z_{0} to z has length at most $\exp(o(u(z)))$. This length estimate may be found as (3.7) of [14] and is stated explicitly in [17]. We parametrize Γ with
respect to arc length and, for n a large positive integer, define s_n by $s_n = \sup\{s : u(\Gamma(s)) \leq n\}$. If n is large and $s_n \leq s < s_{n+1}$ we have

\[
\left| \int_{\Gamma(s)} (f''(z)/f'(z))dz \right| \leq \sum_{k=n}^{\infty} e^{-k} e^{o(k+1)} \leq c_1 e^{-n/2},
\]

using c_j to denote positive constants. Thus f' tends to a finite non-zero value b as z tends to infinity on Γ, and we can assume without loss of generality that $b = 1$. Now we have, for n large and $s_n \leq s < s_{n+1}$, the estimate $|f''(\Gamma(s))-1| \leq c_2|\log |f''(\Gamma(s))|| \leq e^{-n/4}$ and so

\[
\left| \int_{\Gamma(s)} (f''(z)-1)dz \right| \leq \sum_{k=n}^{\infty} e^{-k/4} e^{o(k+1)} = o(1).
\]

Thus $f(z) = z + O(1)$ and $zf''(z)/f(z) = 1 + o(1)$ as z tends to infinity on Γ, which plainly contradicts Lemma B and proves Theorem 2.

We remark finally that a modification of the above proof shows that Theorem 2 holds with f''/f' replaced by $f^{(k+1)}/f^{(k)}$, for any $k \geq 2$.

REFERENCES

Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD, England

E-mail address: jkl@maths.nott.ac.uk